IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i6d10.1007_s10845-020-01675-x.html
   My bibliography  Save this article

An integrated SMED-fuzzy FMEA model for reducing setup time

Author

Listed:
  • Kübra Yazıcı

    (Türkisch-Deutsche Universität)

  • Seda Hatice Gökler

    (Sakarya University)

  • Semra Boran

    (Sakarya University)

Abstract

Today, the companies apply lean or customized production methods, which enable the production of different kinds of products in small quantities, to meet different customer demands. But, the increase in the product variety leads to an increase in the number of setups and thus production time. The companies aim to reduce the setup time by improving activities and by eliminating the problems causing extending setup time. Single minute exchange of die (SMED) method is the most common setup method that makes it possible to perform equipment setup operations in fewer than 10 min, i.e. several minutes expressed by a single digit. It is possible to further reduce setup times by integrating quality tools and methods into the SMED method. In this study, it is developed a novel SMED model that integrating the traditional SMED and fuzzy failure modes and effects analysis (fuzzy-FMEA) methods. Fuzzy FMEA method is used to prevent problems causing further extending setup time on setup activities. A new operation worksheet, “Setup Observation and Analysis Form” that leads the analyst in during the investigation of the machine and its set-up process, is also designed. The new approach is applied to set up a plastic injection mold for a pen manufacturing company. The setup time is reduced from 71.32 to 36.97 min, achieved a 48% improvement.

Suggested Citation

  • Kübra Yazıcı & Seda Hatice Gökler & Semra Boran, 2021. "An integrated SMED-fuzzy FMEA model for reducing setup time," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1547-1561, August.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:6:d:10.1007_s10845-020-01675-x
    DOI: 10.1007/s10845-020-01675-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01675-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01675-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongzhan Ma & Xuening Chu & Deyi Xue & Dongping Chen, 2019. "Identification of to-be-improved components for redesign of complex products and systems based on fuzzy QFD and FMEA," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 623-639, February.
    2. Arash Geramian & Arash Shahin & Behzad Minaei & Jiju Antony, 2020. "Enhanced FMEA: An integrative approach of fuzzy logic-based FMEA and collective process capability analysis," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 800-812, May.
    3. Hossein Safari & Zahra Faraji & Setareh Majidian, 2016. "Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 475-486, April.
    4. Bikram Jit Singh & Dinesh Khanduja, 2012. "Risk management in complex changeovers through CFMEA: an empirical investigation," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 10(4), pages 470-494.
    5. Hu-Chen Liu & Yi-Zeng Chen & Jian-Xin You & Hui Li, 2016. "Risk evaluation in failure mode and effects analysis using fuzzy digraph and matrix approach," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 805-816, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyan Li & Xuedong Liang & Zhi Li, 2023. "The Strategy of Strengthening Efficiency and Environmental Performance of Product Changeover in the Multiproduct Production System," SAGE Open, , vol. 13(3), pages 21582440231, September.
    2. Yildiz Kose & Hatice Nida Civan & Ertugrul Ayyildiz & Emre Cevikcan, 2022. "An Interval Valued Pythagorean Fuzzy AHP–TOPSIS Integrated Model for Ergonomic Assessment of Setup Process under SMED," Sustainability, MDPI, vol. 14(21), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Carmen Carnero, 2020. "Waste Segregation FMEA Model Integrating Intuitionistic Fuzzy Set and the PAPRIKA Method," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    2. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    3. Hongzhan Ma & Xuening Chu & Deyi Xue & Dongping Chen, 2019. "Identification of to-be-improved components for redesign of complex products and systems based on fuzzy QFD and FMEA," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 623-639, February.
    4. Jianghong Zhu & Bin Shuai & Rui Wang & Kwai-Sang Chin, 2019. "Risk Assessment for Failure Mode and Effects Analysis Using the Bonferroni Mean and TODIM Method," Mathematics, MDPI, vol. 7(6), pages 1-17, June.
    5. Linlin Liu & Dongming Fan & Zili Wang & Dezhen Yang & Jingjing Cui & Xinrui Ma & Yi Ren, 2019. "Enhanced GO methodology to support failure mode, effects and criticality analysis," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1451-1468, March.
    6. Pushparenu Bhattacharjee & Syed Abou Iltaf Hussain & V. Dey & U. K. Mandal, 2023. "Failure mode and effects analysis for submersible pump component using proportionate risk assessment model: a case study in the power plant of Agartala," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1778-1798, October.
    7. Yuan, Jiahai & Li, Xinying & Xu, Chuanbo & Zhao, Changhong & Liu, Yuanxin, 2019. "Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method," Energy, Elsevier, vol. 176(C), pages 623-640.
    8. Quan Xiao & Shanshan Wan & Fucai Lu & Shun Li, 2019. "Risk Assessment for Engagement in Sharing Economy of Manufacturing Enterprises: A Matter–Element Extension Based Approach," Sustainability, MDPI, vol. 11(17), pages 1-29, September.
    9. Hossein Sayyadi Tooranloo & Arezoo Sadat Ayatollah, 2024. "Neutrosophic VIKOR approach for multi-attribute group decision-making," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(2), pages 121-134.
    10. Amy H. I. Lee & He-Yau Kang & You-Jyun Liou, 2017. "A Hybrid Multiple-Criteria Decision-Making Approach for Photovoltaic Solar Plant Location Selection," Sustainability, MDPI, vol. 9(2), pages 1-21, January.
    11. Mohammad Taghi Taghavifard & Setareh Majidian, 2022. "Identifying Cloud Computing Risks based on Firm’s Ambidexterity Performance using Fuzzy VIKOR Technique," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(1), pages 113-133, March.
    12. Habib Zare Ahmadabadi & Fatemeh Zamzam & Farahnaz Rahmani Meybodi & Dalia Streimikiene & Abbas Mardani, 2018. "Developent of a New Sesame Product using QFD and DOE methods: A Case Study of Sesame Product in Yazd," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 14(1), pages 27-44.
    13. Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
    14. Jia Huang & Hu-Chen Liu & Chun-Yan Duan & Ming-Shun Song, 2022. "An improved reliability model for FMEA using probabilistic linguistic term sets and TODIM method," Annals of Operations Research, Springer, vol. 312(1), pages 235-258, May.
    15. Yiwei Gong & Marijn Janssen, 2023. "Why Organizations Fail in Implementing Enterprise Architecture Initiatives?," Information Systems Frontiers, Springer, vol. 25(4), pages 1401-1419, August.
    16. Zhen Wang & Rongxi Wang & Wei Deng & Yong Zhao, 2022. "An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System," Energies, MDPI, vol. 15(5), pages 1-25, March.
    17. Hamid Reza Fazeli & Qingjin Peng, 2023. "Integrated approaches of BWM-QFD and FUCOM-QFD for improving weighting solution of design matrix," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1003-1020, March.
    18. Daniel O. Aikhuele, 2021. "Intuitionistic fuzzy hamming distance model for failure detection in a slewing gear system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 884-894, October.
    19. Yi-Jing Zhang & Li-Sheng Hu, 2021. "Fault Propagation Inference Based on a Graph Neural Network for Steam Turbine Systems," Energies, MDPI, vol. 14(2), pages 1-13, January.
    20. Huang, Jia & Li, Zhaojun(Steven) & Liu, Hu-Chen, 2017. "New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 302-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:6:d:10.1007_s10845-020-01675-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.