IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i2d10.1007_s10845-018-1445-4.html
   My bibliography  Save this article

Condition monitoring and prediction of solution quality during a copper electroplating process

Author

Listed:
  • Gerardo Emanuel Granados

    (INP-ENIT)

  • Loïc Lacroix

    (INP-ENIT)

  • Kamal Medjaher

    (INP-ENIT)

Abstract

This paper presents a method for the monitoring and prediction of the electrolyte quality during the process of copper electroplating. This is important in industry, as any deviation in the solution quality leads to a deterioration of the quality of the processed products. The aim of the study is to identify some physical parameters that are representative of the quality variation during the deposition process. These parameters are then tracked online to continuously assess the solution quality and predict its remaining useful life. To do this, the process behavior is first characterized to derive a nominal model and to identify the physical parameters that can be used to describe the aging variation in the electrolyte quality. The aging model is then explored to assess the current level of the solution quality and to predict its remaining useful life. The proposed method is verified using real data acquired from a specifically designed test bench. The obtained results reveal the efficiency of the method.

Suggested Citation

  • Gerardo Emanuel Granados & Loïc Lacroix & Kamal Medjaher, 2020. "Condition monitoring and prediction of solution quality during a copper electroplating process," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 285-300, February.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-1445-4
    DOI: 10.1007/s10845-018-1445-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1445-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1445-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mosallam & K. Medjaher & N. Zerhouni, 2016. "Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 1037-1048, October.
    2. Ahmed Ragab & Mohamed-Salah Ouali & Soumaya Yacout & Hany Osman, 2016. "Remaining useful life prediction using prognostic methodology based on logical analysis of data and Kaplan–Meier estimation," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 943-958, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinping Liu & Jie Wang & Xianfeng Liu & Tianyu Ma & Zhaohui Tang, 2022. "MWRSPCA: online fault monitoring based on moving window recursive sparse principal component analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1255-1271, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riku-Pekka Nikula & Konsta Karioja & Kauko Leiviskä & Esko Juuso, 2019. "Prediction of mechanical stress in roller leveler based on vibration measurements and steel strip properties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1563-1579, April.
    2. Hemir da Cunha Santiago & José Carlos da Silva Cavalcanti & Ricardo Bastos Cavalcante Prudêncio & Mohamed A. Mohamed & Leonie Asfora Sarubbo & Attilio Converti & Manoel Henrique da Nóbrega Marinho, 2023. "A Novel Remaining Useful Estimation Model to Assist Asset Renewal Decisions Applied to the Brazilian Electric Sector," Energies, MDPI, vol. 16(6), pages 1-24, March.
    3. Mohamed Elhefnawy & Ahmed Ragab & Mohamed-Salah Ouali, 2023. "Polygon generation and video-to-video translation for time-series prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 261-279, January.
    4. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    5. Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
    6. Guo, Cui & Ryoo, Hong Seo, 2021. "On Pareto-Optimal Boolean Logical Patterns for Numerical Data," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    7. Merainani, Boualem & Laddada, Sofiane & Bechhoefer, Eric & Chikh, Mohamed Abdessamed Ait & Benazzouz, Djamel, 2022. "An integrated methodology for estimating the remaining useful life of high-speed wind turbine shaft bearings with limited samples," Renewable Energy, Elsevier, vol. 182(C), pages 1141-1151.
    8. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    9. Hua-Xi Zhou & Chang-Guang Zhou & Hu-Tian Feng, 2023. "An integrated lifetime prediction method for double-nut ball screws subject to preload loss failure mode," Journal of Risk and Reliability, , vol. 237(6), pages 1248-1258, December.
    10. Pai Zheng & Xun Xu & Chun-Hsien Chen, 2020. "A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 3-18, January.
    11. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    12. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
    13. Thi-Tinh Le & Seok-Ju Lee & Minh-Chau Dinh & Minwon Park, 2023. "Design of an Improved Remaining Useful Life Prediction Model Based on Vibration Signals of Wind Turbine Rotating Components," Energies, MDPI, vol. 17(1), pages 1-18, December.
    14. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    15. Kedong Yan & Hong Seo Ryoo, 2022. "Graph, clique and facet of boolean logical polytope," Journal of Global Optimization, Springer, vol. 82(4), pages 1015-1052, April.
    16. Li, Xiang & Zhang, Wei & Ding, Qian, 2019. "Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 208-218.
    17. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    18. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    19. Qianhui Wu & Keqin Ding & Biqing Huang, 2020. "Approach for fault prognosis using recurrent neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1621-1633, October.
    20. Shan-Jen Cheng & Wen-Ken Li & Te-Jen Chang & Chang-Hung Hsu, 2021. "Data-Driven Prognostics of the SOFC System Based on Dynamic Neural Network Models," Energies, MDPI, vol. 14(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-1445-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.