IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i1d10.1007_s10845-018-1439-2.html
   My bibliography  Save this article

Smart recovery decision-making of used industrial equipment for sustainable manufacturing: belt lifter case study

Author

Listed:
  • Kai Meng

    (Massachusetts Institute of Technology)

  • Xiaoming Qian

    (Nanjing University of Aeronautics and Astronautics
    Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology)

  • Peihuang Lou

    (Nanjing University of Aeronautics and Astronautics
    Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology)

  • Jiong Zhang

    (Miracle Automation Engineering Co., LTD)

Abstract

End-of-Life (EOL) product recovery is proved to be an attractive way to achieve sustainable manufacturing while extending the producer’s responsibility to closed-loop product service. However, it is still a challenge to provide flexible and smart recovery plans for industrial equipment at different periods of product service. In this paper, we investigate the smart recovery decision-making problem. We propose a system framework for the implementation of smart EOL management based on product condition monitoring. Different product-level EOL business strategies and component-level recovery options are suggested in this recovery decision support system. Then, multi-objective optimization models are formulated to identify the age-dependent recovery roadmap that best matches the product condition and meets the business goals. In order to achieve environmentally friendly recovery, both recovery profits and energy performances are optimized in our models. We conduct a case study of belt lifter used in the automobile assembly line. The Non-dominated Sorting Genetic Algorithm II is used to solve the proposed model. Numerical experiments validate our models and provide practical insights into flexible recovery business.

Suggested Citation

  • Kai Meng & Xiaoming Qian & Peihuang Lou & Jiong Zhang, 2020. "Smart recovery decision-making of used industrial equipment for sustainable manufacturing: belt lifter case study," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 183-197, January.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1439-2
    DOI: 10.1007/s10845-018-1439-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1439-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1439-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    2. Meng, Kai & Lou, Peihuang & Peng, Xianghui & Prybutok, Victor, 2017. "Multi-objective optimization decision-making of quality dependent product recovery for sustainability," International Journal of Production Economics, Elsevier, vol. 188(C), pages 72-85.
    3. Niknejad, A. & Petrovic, D., 2014. "Optimisation of integrated reverse logistics networks with different product recovery routes," European Journal of Operational Research, Elsevier, vol. 238(1), pages 143-154.
    4. Guo, Shanshan & Aydin, Goker & Souza, Gilvan C., 2014. "Dismantle or remanufacture?," European Journal of Operational Research, Elsevier, vol. 233(3), pages 580-583.
    5. Kai Meng & Peihuang Lou & Xianghui Peng & Victor Prybutok, 2017. "Quality-driven recovery decisions for used components in reverse logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4712-4728, August.
    6. S. H. R. Torabi & S. Alibabaei & B. Barooghi Bonab & M. H. Sadeghi & Gh. Faraji, 2017. "Design and optimization of turbine blade preform forging using RSM and NSGA II," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1409-1419, August.
    7. Kai Ding & Pingyu Jiang & Mei Zheng, 2017. "Environmental and economic sustainability-aware resource service scheduling for industrial product service systems," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1303-1316, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Imran Qureshi & Nohman Khan & Shazia Qayyum & Subha Malik & Sanil S Hishan & Thurasamy Ramayah, 2020. "Classifications of Sustainable Manufacturing Practices in ASEAN Region: A Systematic Review and Bibliometric Analysis of the Past Decade of Research," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    2. Neha Jain & Ashish Payal & Aarti Jain, 2023. "Analysis of link failures and recoveries on 6to4 tunneling network with different routing protocol," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1037-1063, March.
    3. Krzysztof Ejsmont & Bartlomiej Gladysz & Aldona Kluczek, 2020. "Impact of Industry 4.0 on Sustainability—Bibliometric Literature Review," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    4. Małgorzata Jasiulewicz-Kaczmarek & Patryk Żywica & Arkadiusz Gola, 2021. "Fuzzy set theory driven maintenance sustainability performance assessment model: a multiple criteria approach," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1497-1515, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunasekara, Lahiru & Robb, David J. & Zhang, Abraham, 2023. "Used product acquisition, sorting and disposition for circular supply chains: Literature review and research directions," International Journal of Production Economics, Elsevier, vol. 260(C).
    2. Meng, Kai & Cao, Ying & Peng, Xianghui & Prybutok, Victor & Gupta, Varun, 2020. "Demand-dependent recovery decision-making of a batch of products for sustainability," International Journal of Production Economics, Elsevier, vol. 224(C).
    3. Yongbo Li & Devika Kannan & P. C. Jha & Kiran Garg & Jyoti Darbari & Neha Agarwal, 2023. "Design of a multi echelon product recovery embeded reverse logistics network for multi products and multi periods," Annals of Operations Research, Springer, vol. 323(1), pages 131-152, April.
    4. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    5. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    6. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    7. Mallidis, Ioannis & Vlachos, Dimitrios & Iakovou, Eleftherios & Dekker, Rommert, 2014. "Design and planning for green global supply chains under periodic review replenishment policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 210-235.
    8. Niknejad, A. & Petrovic, D., 2014. "Optimisation of integrated reverse logistics networks with different product recovery routes," European Journal of Operational Research, Elsevier, vol. 238(1), pages 143-154.
    9. Yuan, Quan & Hua, Zhongsheng & Shen, Bin, 2021. "An automated system of emissions permit trading for transportation firms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    11. Yue Tan & Chunxiang Guo, 2019. "Research on Two-Way Logistics Operation with Uncertain Recycling Quality in Government Multi-Policy Environment," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    12. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    13. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    14. Steeneck, Daniel W. & Sarin, Subhash C., 2018. "Product design for leased products under remanufacturing," International Journal of Production Economics, Elsevier, vol. 202(C), pages 132-144.
    15. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    16. Kannan, Devika & Jabbour, Ana Beatriz Lopes de Sousa & Jabbour, Charbel José Chiappetta, 2014. "Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company," European Journal of Operational Research, Elsevier, vol. 233(2), pages 432-447.
    17. Panagiotidou, Sofia & Nenes, George & Zikopoulos, Christos & Tagaras, George, 2017. "Joint optimization of manufacturing/remanufacturing lot sizes under imperfect information on returns quality," European Journal of Operational Research, Elsevier, vol. 258(2), pages 537-551.
    18. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    19. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    20. Ormerod, Richard J. & Ulrich, Werner, 2013. "Operational research and ethics: A literature review," European Journal of Operational Research, Elsevier, vol. 228(2), pages 291-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1439-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.