IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i7d10.1007_s10845-017-1295-5.html
   My bibliography  Save this article

Manufacturing synchronization in a hybrid flowshop with dynamic order arrivals

Author

Listed:
  • Jian Chen

    (Nanjing University of Aeronautics and Astronautics
    The University of Hong Kong)

  • Meilin Wang

    (The University of Hong Kong
    Guangdong University of Technology)

  • Xiang T. R. Kong

    (The University of Hong Kong)

  • George Q. Huang

    (The University of Hong Kong)

  • Qinyun Dai

    (Guangdong Polytechnical Normal University)

  • Guoqiang Shi

    (State Key Laboratory of Intelligent Manufacturing System Technology)

Abstract

Generally, order punctuality has received plenty of attention by manufacturers in order fulfillment. In order fabrication, jobs from a customer are often separately processed in dispersed manufacturing resources, such as different machines, facilities, or factories. This leads to the difficulties of processing customer orders in a simultaneous manner. This paper proposes a concept of manufacturing synchronization (MfgSync) and measures it from the perspective of simultaneity and punctuality. We study MfgSync of scheduling dynamic arrival orders in a hybrid flowshop. To deal with the dynamic order arrival environment, we schedule the coming orders in a periodic manner so that the dynamic scheduling problem is decomposed into a series of continuous static sub-problems. A base model for each sub-problem is mathematically formulated to minimize the simultaneity of order fabrication measured by mean longest waiting duration considering the order punctuality constraint. We then present a solution algorithm consisting of a periodic scheduling policy and a modified genetic algorithm. Numerical studies demonstrate the effectiveness of the proposed approach. The results also show that bottleneck position has a considerable impact on MfgSync, and we can obtain better MfgSync for the systems with entrance bottlenecks compared to middle and exist bottlenecks. And it is suggested to choose a larger decision interval in off season compared to peak season.

Suggested Citation

  • Jian Chen & Meilin Wang & Xiang T. R. Kong & George Q. Huang & Qinyun Dai & Guoqiang Shi, 2019. "Manufacturing synchronization in a hybrid flowshop with dynamic order arrivals," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2659-2668, October.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:7:d:10.1007_s10845-017-1295-5
    DOI: 10.1007/s10845-017-1295-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-017-1295-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-017-1295-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takahashi, Katsuhiko & Myreshka & Hirotani, Daisuke, 2005. "Comparing CONWIP, synchronized CONWIP, and Kanban in complex supply chains," International Journal of Production Economics, Elsevier, vol. 93(1), pages 25-40, January.
    2. Ling-Huey Su & Ping-Shun Chen & Szu-Yin Chen, 2013. "Scheduling on parallel machines to minimise maximum lateness for the customer order problem," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(5), pages 926-936.
    3. Lin, B.M.T. & Kononov, A.V., 2007. "Customer order scheduling to minimize the number of late jobs," European Journal of Operational Research, Elsevier, vol. 183(2), pages 944-948, December.
    4. Jatinder Gupta & Johnny Ho & Jack van der Veen, 1997. "Single machine hierarchical scheduling with customer orders and multiple job classes," Annals of Operations Research, Springer, vol. 70(0), pages 127-143, April.
    5. Reza Ahmadi & Uttarayan Bagchi & Thomas A. Roemer, 2005. "Coordinated scheduling of customer orders for quick response," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 493-512, September.
    6. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    7. Wang, Guoqing & Cheng, T.C. Edwin, 2007. "Customer order scheduling to minimize total weighted completion time," Omega, Elsevier, vol. 35(5), pages 623-626, October.
    8. Reza H. Ahmadi & Herman Wurgaft, 1994. "Design for Synchronized Flow Manufacturing," Management Science, INFORMS, vol. 40(11), pages 1469-1483, November.
    9. Jian Chen & George Q. Huang & Hao Luo & Junqiang Wang, 2015. "Synchronisation of production scheduling and shipment in an assembly flowshop," International Journal of Production Research, Taylor & Francis Journals, vol. 53(9), pages 2787-2802, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    2. Liu, Yu & Zhang, Qin & Ouyang, Zhiyuan & Huang, Hong-Zhong, 2021. "Integrated production planning and preventive maintenance scheduling for synchronized parallel machines," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
    2. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    3. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.
    4. Roemer, Thomas A. & Ahmadi, Reza, 2010. "Models for concurrent product and process design," European Journal of Operational Research, Elsevier, vol. 203(3), pages 601-613, June.
    5. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    6. Liu, Yu & Zhang, Qin & Ouyang, Zhiyuan & Huang, Hong-Zhong, 2021. "Integrated production planning and preventive maintenance scheduling for synchronized parallel machines," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Federico Della Croce & Christos Koulamas & Vincent T’kindt, 2017. "Minimizing the number of tardy jobs in two-machine settings with common due date," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 133-140, July.
    8. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    9. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    10. Corominas, Albert & Pastor, Rafael & Plans, Joan, 2008. "Balancing assembly line with skilled and unskilled workers," Omega, Elsevier, vol. 36(6), pages 1126-1132, December.
    11. Patrick Dallasega & Erwin Rauch, 2017. "Sustainable Construction Supply Chains through Synchronized Production Planning and Control in Engineer-to-Order Enterprises," Sustainability, MDPI, vol. 9(10), pages 1-25, October.
    12. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    13. Sang M. Lee & David L. Olson & Sang-Heui Lee & Taewon Hwang & Matt S. Shin, 2007. "Entrepreneurial applications of the lean approach to service industries," The Service Industries Journal, Taylor & Francis Journals, vol. 28(7), pages 973-987, November.
    14. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    15. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    16. Wen-Chyuan Chiang & Timothy L. Urban & Chunyong Luo, 2016. "Balancing stochastic two-sided assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6232-6250, October.
    17. Bautista, Joaquín & Batalla-García, Cristina & Alfaro-Pozo, Rocío, 2016. "Models for assembly line balancing by temporal, spatial and ergonomic risk attributes," European Journal of Operational Research, Elsevier, vol. 251(3), pages 814-829.
    18. Hager Triki & Ahmed Mellouli & Faouzi Masmoudi, 2017. "A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2)," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 371-385, February.
    19. Rifat G. Ozdemir & Ugur Cinar & Eren Kalem & Onur Ozcelik, 2016. "Sub-assembly detection and line balancing using fuzzy goal programming approach," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 8(1), pages 65-86.
    20. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:7:d:10.1007_s10845-017-1295-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.