IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i3d10.1007_s10845-015-1086-9.html
   My bibliography  Save this article

A two-phase approach to solve the synchronized bin–forklift scheduling problem

Author

Listed:
  • Nizar El Hachemi

    (Université Mohammed V Agdal
    Université de Montréal)

  • Mohammed Saddoune

    (Université Hassan II
    École Polytechnique de Montréal
    GERAD)

  • Issmail El Hallaoui

    (École Polytechnique de Montréal
    GERAD)

  • Louis-Martin Rousseau

    (École Polytechnique de Montréal
    Université de Montréal)

Abstract

In this paper, we propose a two-phase approach to solve a combined routing and scheduling problem that occurs in the textile industry: fabrics are dyed by dye-jets and transported by forklifts. The objective is to minimize the cost of the unproductive activities, i.e., the dye-jet setup times and the forklift waiting time. The first phase solves an integer linear program to assign jobs (fabrics) to dye-jets while minimizing the setup cost; we compare an arc-based and a path-based formulation. The second phase uses a mixed-integer linear program for the dye-jet scheduling and both the routing and scheduling of forklifts. Experiments are performed on real data provided by a major multinational company, and larger test problems are randomly generated to assess the algorithm. The tests were conducted using Cplex 12.6.0 and a column generation solver. The numerical results show that our approach is efficient in terms of both solution quality and computational time.

Suggested Citation

  • Nizar El Hachemi & Mohammed Saddoune & Issmail El Hallaoui & Louis-Martin Rousseau, 2018. "A two-phase approach to solve the synchronized bin–forklift scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 651-657, March.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:3:d:10.1007_s10845-015-1086-9
    DOI: 10.1007/s10845-015-1086-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1086-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1086-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seokgi Lee & Hyun Woo Jeon & Mona Issabakhsh & Ahmad Ebrahimi, 2022. "An electric forklift routing problem with battery charging and energy penalty constraints," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1761-1777, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caroline Lloyd & Jonathan Payne, 2021. "Fewer jobs, better jobs? An international comparative study of robots and ‘routine’ work in the public sector," Industrial Relations Journal, Wiley Blackwell, vol. 52(2), pages 109-124, March.
    2. John Lees-Miller, 2016. "Minimising average passenger waiting time in personal rapid transit systems," Annals of Operations Research, Springer, vol. 236(2), pages 405-424, January.
    3. repec:zib:zbjtin:v:1:y:2021:i:2:p:54-57 is not listed on IDEAS
    4. Jenny Nossack & Dirk Briskorn & Erwin Pesch, 2018. "Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container Terminal," Transportation Science, INFORMS, vol. 52(5), pages 1059-1076, October.
    5. Boccia, Maurizio & Masone, Adriano & Sterle, Claudio & Murino, Teresa, 2023. "The parallel AGV scheduling problem with battery constraints: A new formulation and a matheuristic approach," European Journal of Operational Research, Elsevier, vol. 307(2), pages 590-603.
    6. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    7. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    8. Boysen, Nils & Schwerdfeger, Stefan & W. Ulmer, Marlin, 2023. "Robotized sorting systems: Large-scale scheduling under real-time conditions with limited lookahead," European Journal of Operational Research, Elsevier, vol. 310(2), pages 582-596.
    9. Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.
    10. Boysen, Nils & Briskorn, Dirk & Fedtke, Stefan & Schmickerath, Marcel, 2019. "Automated sortation conveyors: A survey from an operational research perspective," European Journal of Operational Research, Elsevier, vol. 276(3), pages 796-815.
    11. Amir Ahmadi-Javid & Nasrin Ramshe, 2019. "Designing flexible loop-based material handling AGV paths with cell-adjacency priorities: an efficient cutting-plane algorithm," 4OR, Springer, vol. 17(4), pages 373-400, December.
    12. Amogh Bhosekar & Sandra Ekşioğlu & Tuğçe Işık & Robert Allen, 2023. "A discrete event simulation model for coordinating inventory management and material handling in hospitals," Annals of Operations Research, Springer, vol. 320(2), pages 603-630, January.
    13. Ilias Vlachos & Rodrigo Martinez Pascazzi & Miltiadis Ntotis & Konstantina Spanaki & Stella Despoudi & Panagiotis Repoussis, 2022. "Smart and flexible manufacturing systems using Autonomous Guided Vehicles (AGVs) and the Internet of Things (IoT)," Post-Print hal-03825237, HAL.
    14. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    15. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    16. Pengfei Zhou & Li Lin & Kap Hwan Kim, 2023. "Anisotropic Q-learning and waiting estimation based real-time routing for automated guided vehicles at container terminals," Journal of Heuristics, Springer, vol. 29(2), pages 207-228, June.
    17. Yan, Rundong & Dunnett, S.J. & Jackson, L.M., 2018. "Novel methodology for optimising the design, operation and maintenance of a multi-AGV system," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 130-139.
    18. Leonard Heilig & Stefan Voß, 2017. "Inter-terminal transportation: an annotated bibliography and research agenda," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 35-63, March.
    19. Aziez, Imadeddine & Côté, Jean-François & Coelho, Leandro C., 2022. "Fleet sizing and routing of healthcare automated guided vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    20. Torres, Isidro Ramos & Romero Dessens, Luis Felipe & Martínez Flores, José Luis & Olivares Benítez, Elías, 2015. "Review of Comprehensive Approaches in Optimizing AGV Systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Operational Excellence in Logistics and Supply Chains: Optimization Methods, Data-driven Approaches and Security Insights. Proceedings of the Hamburg , volume 22, pages 203-232, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    21. Nils Boysen & Dirk Briskorn & Simon Emde, 2018. "Scheduling electric vehicles and locating charging stations on a path," Journal of Scheduling, Springer, vol. 21(1), pages 111-126, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:3:d:10.1007_s10845-015-1086-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.