IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i3d10.1007_s10845-019-01473-0.html
   My bibliography  Save this article

Control chart pattern recognition using the convolutional neural network

Author

Listed:
  • Tao Zan

    (Beijing University of Technology)

  • Zhihao Liu

    (Beijing University of Technology)

  • Hui Wang

    (Beijing University of Technology)

  • Min Wang

    (Beijing University of Technology)

  • Xiangsheng Gao

    (Beijing University of Technology)

Abstract

Unnatural control chart patterns (CCPs) usually correspond to the specific factors in a manufacturing process, so the control charts have become important means of the statistical process control. Therefore, an accurate and automatic control chart pattern recognition (CCPR) is of great significance for manufacturing enterprises. In order to improve the CCPR accuracy, experts have designed various complex features, which undoubtedly increases the workload and difficulty of the quality control. To solve these problems, a CCPR method based on a one-dimensional convolutional neural network (1D-CNN) is proposed. The proposed method does not require to extract complex features manually; instead, it uses a 1D-CNN to obtain the optimal feature set from the raw data of the CCPs through the feature learning and completes the CCPR. The dataset for training and validation, containing six typical CCPs, is generated by the Monte-Carlo simulation. Then, the influence of the network structural parameters and activation functions on the recognition performance is analyzed and discussed, and some suggestions for parameter selection are given. Finally, the performance of the proposed method is compared with that of the traditional multi-layer perceptron method using the same dataset. The comparison results show that the proposed 1D-CNN method has obvious advantages in the CCPR tasks. Compared with the related literature, the features extracted by the 1D-CNN are of higher quality. Furthermore, the 1D-CNN trained with simulation dataset still perform well in recognizing the real dataset from the production environment.

Suggested Citation

  • Tao Zan & Zhihao Liu & Hui Wang & Min Wang & Xiangsheng Gao, 2020. "Control chart pattern recognition using the convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 703-716, March.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:3:d:10.1007_s10845-019-01473-0
    DOI: 10.1007/s10845-019-01473-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01473-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01473-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ling-Jing Kao & Tian-Shyug Lee & Chi-Jie Lu, 2016. "A multi-stage control chart pattern recognition scheme based on independent component analysis and support vector machine," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 653-664, June.
    2. Xueliang Zhou & Pingyu Jiang & Xianxiang Wang, 2018. "Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 51-67, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuen-Sheng Cheng & Pei-Wen Chen & Yu-Chin Hsieh & Yu-Tang Wu, 2023. "Multivariate Process Control Chart Pattern Classification Using Multi-Channel Deep Convolutional Neural Networks," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    2. Aamir Majeed Chaudhary & Aamir Sanaullah & Muhammad Hanif & Mohammad M. A. Almazah & Nafisa A. Albasheir & Fuad S. Al-Duais, 2023. "Efficient Monitoring of a Parameter of Non-Normal Process Using a Robust Efficient Control Chart: A Comparative Study," Mathematics, MDPI, vol. 11(19), pages 1-30, October.
    3. Ahmed Maged & Min Xie, 2023. "Recognition of abnormal patterns in industrial processes with variable window size via convolutional neural networks and AdaBoost," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1941-1963, April.
    4. Pei-Hsi Lee & Shih-Lung Liao, 2023. "Residual Control Chart Based on a Convolutional Neural Network and Support Vector Regression for Type-I Censored Data with the Weibull Model," Mathematics, MDPI, vol. 12(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Maged & Min Xie, 2023. "Recognition of abnormal patterns in industrial processes with variable window size via convolutional neural networks and AdaBoost," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1941-1963, April.
    2. Pamela Chiñas-Sanchez & Ismael Lopez-Juarez & Jose Antonio Vazquez-Lopez & Jose Luis Navarro-Gonzalez & Aidee Hernandez-Lopez, 2021. "Out-of-Control Multivariate Patterns Recognition Using D 2 and SVM: A Study Case for GMAW," Mathematics, MDPI, vol. 9(5), pages 1-14, February.
    3. Yuehjen E. Shao & Po-Yu Chang & Chi-Jie Lu, 2017. "Applying Two-Stage Neural Network Based Classifiers to the Identification of Mixture Control Chart Patterns for an SPC-EPC Process," Complexity, Hindawi, vol. 2017, pages 1-10, October.
    4. Yun Bai & Zhenzhong Sun & Bo Zeng & Jianyu Long & Lin Li & José Valente Oliveira & Chuan Li, 2019. "A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2245-2256, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:3:d:10.1007_s10845-019-01473-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.