IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v35y2018i01ns0217595918500057.html
   My bibliography  Save this article

A Multi-Fidelity Model Approach for Simultaneous Scheduling of Machines and Vehicles in Flexible Manufacturing Systems

Author

Listed:
  • James T. Lin

    (Department of Industrial Engineering and Engineering Management, National Tsing Hua University, No. 101, Section 2, Guangfu Road, Hsinchu 300, Taiwan R. O. C.)

  • Chun-Chih Chiu

    (Department of Industrial Engineering and Engineering Management, National Tsing Hua University, No. 101, Section 2, Guangfu Road, Hsinchu 300, Taiwan R. O. C.)

  • Edward Huang

    (Department of System Engineering and Operations Research, George Mason University, Fairfax, VA 22030, USA)

  • Hung-Ming Chen

    (Department of Industrial Engineering and Engineering Management, National Tsing Hua University, No. 101, Section 2, Guangfu Road, Hsinchu 300, Taiwan R. O. C.)

Abstract

Driven by sensor technologies and Internet of Things, massive real-time data from highly interconnected devices are available, which enables the improvement of decision-making quality. Scheduling of such production systems can be challenging as it must incorporate the latest data and be able to re-plan quickly. In this research, a multi-fidelity model for simultaneous scheduling problem of machines and vehicles at flexible manufacturing system has been proposed. In order to improve the computational efficiency, we extend the framework, called multi-fidelity optimization with ordinal transformation and optimal sampling, with combining with the K-means method. The proposed framework enables the benefits of both fast and inexpensive low-fidelity models with accurate but more expensive high-fidelity models. Results show that this approach can significantly decrease computational cost compared with other algorithms in the literature.

Suggested Citation

  • James T. Lin & Chun-Chih Chiu & Edward Huang & Hung-Ming Chen, 2018. "A Multi-Fidelity Model Approach for Simultaneous Scheduling of Machines and Vehicles in Flexible Manufacturing Systems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-20, February.
  • Handle: RePEc:wsi:apjorx:v:35:y:2018:i:01:n:s0217595918500057
    DOI: 10.1142/S0217595918500057
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595918500057
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595918500057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ümit Bilge & Gündüz Ulusoy, 1995. "A Time Window Approach to Simultaneous Scheduling of Machines and Material Handling System in an FMS," Operations Research, INFORMS, vol. 43(6), pages 1058-1070, December.
    2. Lacomme, Philippe & Larabi, Mohand & Tchernev, Nikolay, 2013. "Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles," International Journal of Production Economics, Elsevier, vol. 143(1), pages 24-34.
    3. Jie Xu & Edward Huang & Chun-Hung Chen & Loo Hay Lee, 2015. "Simulation Optimization: A Review and Exploration in the New Era of Cloud Computing and Big Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arash Amirteimoori & Reza Kia, 2023. "Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 727-753, September.
    2. James T. Lin & Chun-Chih Chiu & Yu-Hsiang Chang, 2019. "Simulation-based optimization approach for simultaneous scheduling of vehicles and machines with processing time uncertainty in FMS," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 104-141, March.
    3. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    4. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    5. Moussa Abderrahim & Abdelghani Bekrar & Damien Trentesaux & Nassima Aissani & Karim Bouamrane, 2020. "Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints," Energies, MDPI, vol. 13(18), pages 1-19, September.
    6. Quang-Vinh Dang & Cong Thanh Nguyen & Hana Rudová, 2019. "Scheduling of mobile robots for transportation and manufacturing tasks," Journal of Heuristics, Springer, vol. 25(2), pages 175-213, April.
    7. Olatunde T. Baruwa & Miquel A. Piera, 2016. "A coloured Petri net-based hybrid heuristic search approach to simultaneous scheduling of machines and automated guided vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4773-4792, August.
    8. Fontes, Dalila B.M.M. & Homayouni, S. Mahdi & Gonçalves, José F., 2023. "A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1140-1157.
    9. Jianxun Li & Wenjie Cheng & Kin Keung Lai & Bhagwat Ram, 2022. "Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    10. Berterottière, Lucas & Dauzère-Pérès, Stéphane & Yugma, Claude, 2024. "Flexible job-shop scheduling with transportation resources," European Journal of Operational Research, Elsevier, vol. 312(3), pages 890-909.
    11. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    12. Jianpei Wen & Hanyu Jiang & Jie Song, 2019. "A Stochastic Queueing Model for Capacity Allocation in the Hierarchical Healthcare Delivery System," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-24, February.
    13. Le-Anh, T. & de Koster, M.B.M., 2004. "A Review Of Design And Control Of Automated Guided Vehicle Systems," ERIM Report Series Research in Management ERS;2004-030-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Lingxuan Liu & Leyuan Shi, 2019. "Simulation Optimization on Complex Job Shop Scheduling with Non-Identical Job Sizes," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(05), pages 1-26, October.
    15. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    16. Yun, Lingxiang & Li, Lin & Ma, Shuaiyin, 2022. "Demand response for manufacturing systems considering the implications of fast-charging battery powered material handling equipment," Applied Energy, Elsevier, vol. 310(C).
    17. Jie Song & Xin Pan & Chao Lu & Hanchen Xu, 2017. "A Simulation-Based Optimization Method for Hybrid Frequency Regulation System Configuration," Energies, MDPI, vol. 10(9), pages 1-14, August.
    18. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    19. Hurink, Johann & Knust, Sigrid, 2005. "Tabu search algorithms for job-shop problems with a single transport robot," European Journal of Operational Research, Elsevier, vol. 162(1), pages 99-111, April.
    20. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:35:y:2018:i:01:n:s0217595918500057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.