IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v25y2019i2d10.1007_s10732-018-9393-x.html
   My bibliography  Save this article

Implementation of a maximum clique search procedure on CUDA

Author

Listed:
  • Paweł Daniluk

    (Samsung Research and Development Institute Poland
    Mossakowski Medical Research Centre, Polish Academy of Sciences)

  • Grzegorz Firlik

    (University of Warsaw)

  • Bogdan Lesyng

    (Mossakowski Medical Research Centre, Polish Academy of Sciences
    University of Warsaw)

Abstract

We present a novel implementation of a Motzkin–Straus-based iterative clique-finding algorithm for GPUs. The well-known iterative approach is enhanced by an annealing variant, where better convergence is obtained by introducing an additional parameter that eliminates certain local maxima, and by an attenuation variant, where the search is repeated several times and known cliques are attenuated by reducing the edge weights. The proposed solution belongs to a global optimization class of methods. It is particularly well suited to large and/or dense graphs, and outperforms other popular clique-finding methods. Therefore, it could be useful in many practical applications related to graph representations of the structures and/or dynamics of complex systems. The proposed algorithm was chosen on the basis of its portability to GPUs. Our implementation includes optimizations aimed at maximizing utilization of GPU cores by delaying some auxiliary computations and performing them simultaneously with the main matrix-vector multiplication. It achieves an average speedup of up to $$20\,\times $$ 20 × over the CPU version, depending on the graph size and density. CUDA-MS is available under the GPL license.

Suggested Citation

  • Paweł Daniluk & Grzegorz Firlik & Bogdan Lesyng, 2019. "Implementation of a maximum clique search procedure on CUDA," Journal of Heuristics, Springer, vol. 25(2), pages 247-271, April.
  • Handle: RePEc:spr:joheur:v:25:y:2019:i:2:d:10.1007_s10732-018-9393-x
    DOI: 10.1007/s10732-018-9393-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-018-9393-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-018-9393-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent, Monique & Vargas, Luis Felipe, 2022. "Finite convergence of sum-of-squares hierarchies for the stability number of a graph," Other publications TiSEM 3998b864-7504-4cf4-bc1d-f, Tilburg University, School of Economics and Management.
    2. Foad Mahdavi Pajouh, 2020. "Minimum cost edge blocker clique problem," Annals of Operations Research, Springer, vol. 294(1), pages 345-376, November.
    3. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    4. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.
    5. Luzhi Wang & Shuli Hu & Mingyang Li & Junping Zhou, 2019. "An Exact Algorithm for Minimum Vertex Cover Problem," Mathematics, MDPI, vol. 7(7), pages 1-8, July.
    6. Zhou, Yi & Rossi, André & Hao, Jin-Kao, 2018. "Towards effective exact methods for the Maximum Balanced Biclique Problem in bipartite graphs," European Journal of Operational Research, Elsevier, vol. 269(3), pages 834-843.
    7. Zhong, Haonan & Mahdavi Pajouh, Foad & A. Prokopyev, Oleg, 2023. "On designing networks resilient to clique blockers," European Journal of Operational Research, Elsevier, vol. 307(1), pages 20-32.
    8. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
    9. Rota Bulò, Samuel & Pelillo, Marcello, 2017. "Dominant-set clustering: A review," European Journal of Operational Research, Elsevier, vol. 262(1), pages 1-13.
    10. Li, Chu-Min & Liu, Yanli & Jiang, Hua & Manyà, Felip & Li, Yu, 2018. "A new upper bound for the maximum weight clique problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 66-77.
    11. Sebastian Lamm & Peter Sanders & Christian Schulz & Darren Strash & Renato F. Werneck, 2017. "Finding near-optimal independent sets at scale," Journal of Heuristics, Springer, vol. 23(4), pages 207-229, August.
    12. James T. Hungerford & Francesco Rinaldi, 2019. "A General Regularized Continuous Formulation for the Maximum Clique Problem," Management Science, INFORMS, vol. 44(4), pages 1161-1173, November.
    13. San Segundo, Pablo & Furini, Fabio & Álvarez, David & Pardalos, Panos M., 2023. "CliSAT: A new exact algorithm for hard maximum clique problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1008-1025.
    14. Melisew Tefera Belachew & Nicolas Gillis, 2017. "Solving the Maximum Clique Problem with Symmetric Rank-One Non-negative Matrix Approximation," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 279-296, April.
    15. Kristjan Reba & Matej Guid & Kati Rozman & Dušanka Janežič & Janez Konc, 2021. "Exact Maximum Clique Algorithm for Different Graph Types Using Machine Learning," Mathematics, MDPI, vol. 10(1), pages 1-14, December.
    16. Elisabeth Gaar & Melanie Siebenhofer & Angelika Wiegele, 2022. "An SDP-based approach for computing the stability number of a graph," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 141-161, February.
    17. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2020. "A Lagrangian Bound on the Clique Number and an Exact Algorithm for the Maximum Edge Weight Clique Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 747-762, July.
    18. Lehouillier, Thibault & Omer, Jérémy & Soumis, François & Desaulniers, Guy, 2017. "Two decomposition algorithms for solving a minimum weight maximum clique model for the air conflict resolution problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 696-712.
    19. Zhou, Yi & Hao, Jin-Kao & Goëffon, Adrien, 2017. "PUSH: A generalized operator for the Maximum Vertex Weight Clique Problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 41-54.
    20. Oleksandra Yezerska & Sergiy Butenko & Vladimir L. Boginski, 2018. "Detecting robust cliques in graphs subject to uncertain edge failures," Annals of Operations Research, Springer, vol. 262(1), pages 109-132, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:25:y:2019:i:2:d:10.1007_s10732-018-9393-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.