IDEAS home Printed from https://ideas.repec.org/a/spr/joevec/v34y2024i3d10.1007_s00191-024-00869-3.html
   My bibliography  Save this article

Cost share-induced technological change: An analytical classical-evolutionary model

Author

Listed:
  • Eric Kemp-Benedict

    (University of Leeds School of Earth and Environment)

Abstract

This paper builds on prior work by the author on cost share-induced technological change. The theoretical model views selection of candidate innovations as a capital budgeting exercise. In this paper it treats the case in which firms target an incremental rate of profit, which introduces a nonzero threshold into a “selection frontier”. This presents analytical challenges, which are resolved in this paper by assuming that the probability distribution of potential increases in productivity among the set of fit innovations is normal. That permits an explicit derivation of a micro-level model of cost share-induced technological change that can be taken as a candidate functional form for an aggregate model. The model is calibrated against historical data for India, China, and the United States, three large continental economies at different levels of per capita GDP. The model is able to fit the data with reasonable fidelity, and the fitted model parameters can be given a reasonable interpretation. The paper further shows that combining cost share-induced technological change with price-setting behavior produces theoretically interesting results.

Suggested Citation

  • Eric Kemp-Benedict, 2024. "Cost share-induced technological change: An analytical classical-evolutionary model," Journal of Evolutionary Economics, Springer, vol. 34(3), pages 515-567, July.
  • Handle: RePEc:spr:joevec:v:34:y:2024:i:3:d:10.1007_s00191-024-00869-3
    DOI: 10.1007/s00191-024-00869-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00191-024-00869-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00191-024-00869-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    2. Eckhard Hein & Artur Tarassow, 2010. "Distribution, aggregate demand and productivity growth: theory and empirical results for six OECD countries based on a post-Kaleckian model," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 34(4), pages 727-754.
    3. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    4. Shaikh, Anwar, 2016. "Capitalism: Competition, Conflict, Crises," OUP Catalogue, Oxford University Press, number 9780199390632.
    5. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    6. Andreas Pyka & Uwe Cantner (ed.), 2017. "Foundations of Economic Change," Economic Complexity and Evolution, Springer, number 978-3-319-62009-1, December.
    7. Uwe Cantner, 2017. "Foundations of Economic Change: An Extended Schumpeterian Approach," Economic Complexity and Evolution, in: Andreas Pyka & Uwe Cantner (ed.), Foundations of Economic Change, pages 9-49, Springer.
    8. Mario Cassetti, 2003. "Bargaining power, effective demand and technical progress: a Kaleckian model of growth," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 27(3), pages 449-464, May.
    9. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    10. Roberto Veneziani & Luca Zamparelli & Daniele Tavani & Luca Zamparelli, 2017. "Endogenous Technical Change In Alternative Theories Of Growth And Distribution," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1272-1303, December.
    11. Weitzman, Martin L, 1996. "Hybridizing Growth Theory," American Economic Review, American Economic Association, vol. 86(2), pages 207-212, May.
    12. Robert Inklaar & Pieter Woltjer & Daniel Gallardo Albarrán, 2019. "The Composition of Capital and Cross-Country Productivity Comparisons," International Productivity Monitor, Centre for the Study of Living Standards, vol. 36, pages 34-52, Spring.
    13. Alessandro Caiani & Alberto Russo & Mauro Gallegati, 2019. "Does inequality hamper innovation and growth? An AB-SFC analysis," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 177-228, March.
    14. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    15. Tarun K. Mukherjee & Glenn V. Henderson, 1987. "The Capital Budgeting Process: Theory and Practice," Interfaces, INFORMS, vol. 17(2), pages 78-90, April.
    16. Joonkyung Ha & Peter Howitt, 2007. "Accounting for Trends in Productivity and R&D: A Schumpeterian Critique of Semi-Endogenous Growth Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(4), pages 733-774, June.
    17. Yoshinori Shiozawa, 2020. "A new framework for analyzing technological change," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 989-1034, September.
    18. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    19. Lee,Frederic S., 2006. "Post Keynesian Price Theory," Cambridge Books, Cambridge University Press, number 9780521030212, November.
    20. William D. Nordhaus, 1973. "Some Skeptical Thoughts on the Theory of Induced Innovation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 87(2), pages 208-219.
    21. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    22. Eric Kemp‐Benedict, 2020. "Convergence of actual, warranted, and natural growth rates in a Kaleckian–Harrodian‐classical model," Metroeconomica, Wiley Blackwell, vol. 71(4), pages 851-881, November.
    23. Rui Torres de Oliveira & Martie-Louise Verreynne & Sandra Figueira & Marta Indulska & John Steen, 2022. "How do institutional innovation systems affect open innovation?," Journal of Small Business Management, Taylor & Francis Journals, vol. 60(6), pages 1404-1448, November.
    24. Grosse, E. H. & Glock, C. H. & Müller, Seb., 2015. "Production economics and the learning curve: A Meta-Analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 74127, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    25. James D. Hamilton, 2017. "Why You Should Never Use the Hodrick-Prescott Filter," NBER Working Papers 23429, National Bureau of Economic Research, Inc.
    26. A. J. Julius, 2005. "Steady‐State Growth And Distribution With An Endogenous Direction Of Technical Change," Metroeconomica, Wiley Blackwell, vol. 56(1), pages 101-125, February.
    27. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    28. Graham, John R. & Harvey, Campbell R., 2001. "The theory and practice of corporate finance: evidence from the field," Journal of Financial Economics, Elsevier, vol. 60(2-3), pages 187-243, May.
    29. Zamparelli, Luca, 2024. "On the positive relation between the wage share and labor productivity growth with endogenous size and direction of technical change," Economic Modelling, Elsevier, vol. 131(C).
    30. Romer, Paul M, 1987. "Growth Based on Increasing Returns Due to Specialization," American Economic Review, American Economic Association, vol. 77(2), pages 56-62, May.
    31. John Graham & Campbell Harvey, 2002. "HOW DO CFOs MAKE CAPITAL BUDGETING AND CAPITAL STRUCTURE DECISIONS?," Journal of Applied Corporate Finance, Morgan Stanley, vol. 15(1), pages 8-23, March.
    32. Eric Kemp-Benedict, 2022. "A classical-evolutionary model of technological change," Journal of Evolutionary Economics, Springer, vol. 32(4), pages 1303-1343, September.
    33. Lucrezia Fanti, 2021. "‘Kaldor Facts’ and the decline of Wage Share: An agent based-stock flow consistent model of induced technical change along Classical and Keynesian lines," Journal of Evolutionary Economics, Springer, vol. 31(2), pages 379-415, April.
    34. Jesus Felipe, 2001. "Endogenous Growth, Increasing Returns and Externalities: An Alternative Interpretation of the Evidence," Metroeconomica, Wiley Blackwell, vol. 52(4), pages 391-427, November.
    35. Nicholas Kaldor, 1961. "Capital Accumulation and Economic Growth," International Economic Association Series, in: D. C. Hague (ed.), The Theory of Capital, chapter 0, pages 177-222, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Kemp-Benedict, 2022. "A classical-evolutionary model of technological change," Journal of Evolutionary Economics, Springer, vol. 32(4), pages 1303-1343, September.
    2. Roberto Veneziani & Luca Zamparelli & Daniele Tavani & Luca Zamparelli, 2017. "Endogenous Technical Change In Alternative Theories Of Growth And Distribution," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1272-1303, December.
    3. Ekaterina Ponomareva & Alexandra Bozhechkova & Alexandr Knobel, 2012. "Factors of Economic Growth," Published Papers 172, Gaidar Institute for Economic Policy, revised 2013.
    4. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    5. van de Klundert, T.C.M.J. & Smulders, J.A., 1991. "Reconstructing growth theory : A survey," Other publications TiSEM 19355c51-17eb-4d5d-aa66-b, Tilburg University, School of Economics and Management.
    6. Eric Kemp‐Benedict, 2020. "Convergence of actual, warranted, and natural growth rates in a Kaleckian–Harrodian‐classical model," Metroeconomica, Wiley Blackwell, vol. 71(4), pages 851-881, November.
    7. Descalzi Ricardo Luis & Acedo Colli Luis & Barone Sergio & Navarrete José Luis, 2024. "Midiendo la relación entre crecimiento e inversión en un modelo AK," Asociación Argentina de Economía Política: Working Papers 4726, Asociación Argentina de Economía Política.
    8. Martin Fleming, 2021. "Productivity Growth and Capital Deepening in the Fourth Industrial Revolution," Working Papers 010, The Productivity Institute.
    9. Bucci, Alberto & Eraydın, Levent & Müller, Moritz, 2019. "Dilution effects, population growth and economic growth under human capital accumulation and endogenous technological change," Journal of Macroeconomics, Elsevier, vol. 62(C).
    10. Patel, Dev & Sandefur, Justin & Subramanian, Arvind, 2021. "The new era of unconditional convergence," Journal of Development Economics, Elsevier, vol. 152(C).
    11. Li, Defu & Bental, Benjamin, 2023. "What determines the Direction of Technological Progress(2023.11.16)?," MPRA Paper 119211, University Library of Munich, Germany, revised 16 Nov 2023.
    12. Aysit Tansel & Ceyhan Ozturk & Erkan Erdil, 2021. "The Impact of Body Mass Index on Growth, Schooling, Productivity, and Savings: A Cross-Country Study," Koç University-TUSIAD Economic Research Forum Working Papers 2118, Koc University-TUSIAD Economic Research Forum.
    13. Bloom, David E. & Canning, David & Kotschy, Rainer & Prettner, Klaus & Schünemann, Johannes, 2024. "Health and economic growth: Reconciling the micro and macro evidence," World Development, Elsevier, vol. 178(C).
    14. Adriana Di Liberto, 2007. "Convergence and Divergence in Neoclassical Growth Models with Human Capital," Economia politica, Società editrice il Mulino, issue 2, pages 289-322.
    15. repec:ebl:ecbull:v:2:y:2002:i:1:p:1-15 is not listed on IDEAS
    16. Gancia, Gino & Zilibotti, Fabrizio, 2005. "Horizontal Innovation in the Theory of Growth and Development," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 3, pages 111-170, Elsevier.
    17. zamparelli, luca, 2008. "Direction and intensity of technical change: a micro-founded growth model," MPRA Paper 10843, University Library of Munich, Germany.
    18. Gehringer, Agnieszka & Prettner, Klaus, 2019. "Longevity And Technological Change," Macroeconomic Dynamics, Cambridge University Press, vol. 23(4), pages 1471-1503, June.
    19. Martin Zagler & Georg Dürnecker, 2003. "Fiscal Policy and Economic Growth," Journal of Economic Surveys, Wiley Blackwell, vol. 17(3), pages 397-418, July.
    20. Maria João Ribeiro, 2003. "Endogenous Growth: Analytical Review of its Generating Mechanisms," NIPE Working Papers 4/2003, NIPE - Universidade do Minho.
    21. Chris Belmert Milindi & Roula Inglesi-Lotz, 2023. "Impact of technological progress on carbon emissions in different country income groups," Energy & Environment, , vol. 34(5), pages 1348-1382, August.

    More about this item

    Keywords

    Technological change; Evolutionary; Classical; Neo-Marxian;
    All these keywords.

    JEL classification:

    • E11 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Marxian; Sraffian; Kaleckian
    • E14 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Austrian; Evolutionary; Institutional
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joevec:v:34:y:2024:i:3:d:10.1007_s00191-024-00869-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.