IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v15y2024i2d10.1007_s13132-023-01601-5.html
   My bibliography  Save this article

Enhancing Financial Risk Prediction for Listed Companies: A Catboost-Based Ensemble Learning Approach

Author

Listed:
  • Haitao Lu

    (Henan Institute of Economics and Trade)

  • Xiaofeng Hu

    (Henan Institute of Economics and Trade)

Abstract

The New Third Board (NTB) market is a non-publicly traded stock exchange in the Chinese securities market and is an essential component of the Chinese capital market. The distinctive features of the NTB market are its low entry barriers, high flexibility, and relatively minimal information disclosure requirements, which, in turn, introduce higher levels of risk. In order to effectively predict the financial risks of NTB-listed companies, a predictive model based on data mining and machine learning technologies needs to be developed. The purpose of this research is to construct a financial risk prediction model for NTB-listed companies, based on integrated feature engineering and learning models, to enhance risk warning capabilities and accuracy. In this study, 15 predictive indicators were formed based on collected financial data of listed companies, and the F-score was used to calculate risk prediction ground truth. Subsequently, through supervised learning, an ensemble learning model, Catboost, was trained for risk assessment and prediction in different time periods. The results of the study indicate that this framework aligns with professional scoring trends, and the mean squared error (MSE) and mean absolute error (MAE) metrics outperform traditional machine learning methods significantly. Notably, the MAE metric is as low as 0.124, suggesting a high level of precision in intelligent risk prediction, offering new perspectives for financial risk assessment of NTB-listed companies in the future.

Suggested Citation

  • Haitao Lu & Xiaofeng Hu, 2024. "Enhancing Financial Risk Prediction for Listed Companies: A Catboost-Based Ensemble Learning Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 9824-9840, June.
  • Handle: RePEc:spr:jknowl:v:15:y:2024:i:2:d:10.1007_s13132-023-01601-5
    DOI: 10.1007/s13132-023-01601-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-023-01601-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-023-01601-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:15:y:2024:i:2:d:10.1007_s13132-023-01601-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.