IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v15y2024i2d10.1007_s13132-023-01601-5.html
   My bibliography  Save this article

Enhancing Financial Risk Prediction for Listed Companies: A Catboost-Based Ensemble Learning Approach

Author

Listed:
  • Haitao Lu

    (Henan Institute of Economics and Trade)

  • Xiaofeng Hu

    (Henan Institute of Economics and Trade)

Abstract

The New Third Board (NTB) market is a non-publicly traded stock exchange in the Chinese securities market and is an essential component of the Chinese capital market. The distinctive features of the NTB market are its low entry barriers, high flexibility, and relatively minimal information disclosure requirements, which, in turn, introduce higher levels of risk. In order to effectively predict the financial risks of NTB-listed companies, a predictive model based on data mining and machine learning technologies needs to be developed. The purpose of this research is to construct a financial risk prediction model for NTB-listed companies, based on integrated feature engineering and learning models, to enhance risk warning capabilities and accuracy. In this study, 15 predictive indicators were formed based on collected financial data of listed companies, and the F-score was used to calculate risk prediction ground truth. Subsequently, through supervised learning, an ensemble learning model, Catboost, was trained for risk assessment and prediction in different time periods. The results of the study indicate that this framework aligns with professional scoring trends, and the mean squared error (MSE) and mean absolute error (MAE) metrics outperform traditional machine learning methods significantly. Notably, the MAE metric is as low as 0.124, suggesting a high level of precision in intelligent risk prediction, offering new perspectives for financial risk assessment of NTB-listed companies in the future.

Suggested Citation

  • Haitao Lu & Xiaofeng Hu, 2024. "Enhancing Financial Risk Prediction for Listed Companies: A Catboost-Based Ensemble Learning Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 9824-9840, June.
  • Handle: RePEc:spr:jknowl:v:15:y:2024:i:2:d:10.1007_s13132-023-01601-5
    DOI: 10.1007/s13132-023-01601-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-023-01601-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-023-01601-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zixian Liu & Guansan Du & Shuai Zhou & Haifeng Lu & Han Ji, 2022. "Analysis of Internet Financial Risks Based on Deep Learning and BP Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1481-1499, April.
    2. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    3. Sun, Yu & Chen, Lizhen & Sun, Huaping & Taghizadeh-Hesary, Farhad, 2020. "Low-carbon financial risk factor correlation in the belt and road PPP project," Finance Research Letters, Elsevier, vol. 35(C).
    4. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    5. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    6. Xun Huang & Cheng-Zhao Zhang & Jia Yuan, 2020. "Predicting Extreme Financial Risks on Imbalanced Dataset: A Combined Kernel FCM and Kernel SMOTE Based SVM Classifier," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 187-216, June.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Mohsin, Muhammad & Taghizadeh-Hesary, Farhad & Panthamit, Nisit & Anwar, Saba & Abbas, Qaiser & Vo, Xuan Vinh, 2021. "Developing Low Carbon Finance Index: Evidence From Developed and Developing Economies," Finance Research Letters, Elsevier, vol. 43(C).
    9. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    10. Caterina De Lucia & Pasquale Pazienza & Mark Bartlett, 2020. "Does Good ESG Lead to Better Financial Performances by Firms? Machine Learning and Logistic Regression Models of Public Enterprises in Europe," Sustainability, MDPI, vol. 12(13), pages 1-29, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    3. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    4. Chiuling Lu & Ann Yang & Jui-Feng Huang, 2015. "Bankruptcy predictions for U.S. air carrier operations: a study of financial data," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(3), pages 574-589, July.
    5. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    6. Dmytro Kovalenko & Olga Afanasieva & Nani Zabuta & Tetiana Boiko & Rosen Rosenov Baltov, 2021. "Model of Assessing the Overdue Debts in a Commercial Bank Using Neuro-Fuzzy Technologies," JRFM, MDPI, vol. 14(5), pages 1-20, May.
    7. Mark Clintworth & Dimitrios Lyridis & Evangelos Boulougouris, 2023. "Financial risk assessment in shipping: a holistic machine learning based methodology," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 90-121, March.
    8. Saoussen Boujelben & Fedhila Hassouna, 2007. "La pertinence des cash-flows d'exploitation et de l'information financière traditionnelle dans la prévision de la détresse financière des entreprises tunisiennes," Post-Print halshs-00544881, HAL.
    9. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    10. Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
    11. Ha-Thu Nguyen, 2014. "Default Predictors in Credit Scoring - Evidence from France’s Retail Banking Institution," EconomiX Working Papers 2014-26, University of Paris Nanterre, EconomiX.
    12. Mramor, Dusan & Valentincic, Aljosa, 2003. "Forecasting the liquidity of very small private companies," Journal of Business Venturing, Elsevier, vol. 18(6), pages 745-771, November.
    13. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    14. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    15. Zaghdoudi Khemais & Djebali Nesrine & Mezni Mohamed, 2016. "Credit Scoring and Default Risk Prediction: A Comparative Study between Discriminant Analysis & Logistic Regression," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(4), pages 39-53, April.
    16. Hunter, John & Isachenkova, Natalia, 2006. "Aggregate economy risk and company failure: An examination of UK quoted firms in the early 1990s," Journal of Policy Modeling, Elsevier, vol. 28(8), pages 911-919, November.
    17. Jones, Stewart & Hensher, David A., 2007. "Modelling corporate failure: A multinomial nested logit analysis for unordered outcomes," The British Accounting Review, Elsevier, vol. 39(1), pages 89-107.
    18. Evangelos C. Charalambakis, 2015. "On the Prediction of Corporate Financial Distress in the Light of the Financial Crisis: Empirical Evidence from Greek Listed Firms," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 22(3), pages 407-428, November.
    19. Frieda Rikkers & Andre E. Thibeault, 2009. "A Structural form Default Prediction Model for SMEs, Evidence from the Dutch Market," Multinational Finance Journal, Multinational Finance Journal, vol. 13(3-4), pages 229-264, September.
    20. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:15:y:2024:i:2:d:10.1007_s13132-023-01601-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.