IDEAS home Printed from https://ideas.repec.org/a/eee/jbvent/v18y2003i6p745-771.html
   My bibliography  Save this article

Forecasting the liquidity of very small private companies

Author

Listed:
  • Mramor, Dusan
  • Valentincic, Aljosa

Abstract

No abstract is available for this item.

Suggested Citation

  • Mramor, Dusan & Valentincic, Aljosa, 2003. "Forecasting the liquidity of very small private companies," Journal of Business Venturing, Elsevier, vol. 18(6), pages 745-771, November.
  • Handle: RePEc:eee:jbvent:v:18:y:2003:i:6:p:745-771
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0883-9026(03)00002-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    2. Everett, Jim & Watson, John, 1998. "Small Business Failure and External Risk Factors," Small Business Economics, Springer, vol. 11(4), pages 371-390, December.
    3. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    4. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    5. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    6. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yacine Belghitar & Andrea Moro & Nemanja Radić, 2022. "When the rainy day is the worst hurricane ever: the effects of governmental policies on SMEs during COVID-19," Small Business Economics, Springer, vol. 58(2), pages 943-961, February.
    2. Dejan JOVANOVIĆ & Mirjana TODOROVIĆ & Milka GRBIĆ, 2017. "Financial Indicators As Predictors Of Illiquidity," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 128-149, March.
    3. Kautonen, Teemu & Fredriksson, Antti & Minniti, Maria & Moro, Andrea, 2020. "Trust-based banking and SMEs’ access to credit," Journal of Business Venturing Insights, Elsevier, vol. 14(C).
    4. Jones, Stewart & Wang, Tim, 2019. "Predicting private company failure: A multi-class analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 161-188.
    5. Vidimlić Selma, 2019. "Innovated Altman’s Model as a Predictor of Malfunctioning of Small and Medium-Sized Businesses in Bosnia and Herzegovina," Economic Themes, Sciendo, vol. 57(1), pages 21-33, March.
    6. Jan Brinckmann & Soeren Salomo & Hans Georg Gemuenden, 2011. "Financial Management Competence of Founding Teams and Growth of New Technology–Based Firms," Entrepreneurship Theory and Practice, , vol. 35(2), pages 217-243, March.
    7. Neil Garrod & Urska Kosi & Aljosa Valentincic, 2008. "Asset Write‐Offs in the Absence of Agency Problems," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(3‐4), pages 307-330, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
    2. Evangelos C. Charalambakis, 2015. "On the Prediction of Corporate Financial Distress in the Light of the Financial Crisis: Empirical Evidence from Greek Listed Firms," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 22(3), pages 407-428, November.
    3. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    4. Zhichao Luo & Pingyu Hsu & Ni Xu, 2020. "SME Default Prediction Framework with the Effective Use of External Public Credit Data," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    5. Qunfeng LIAO & Seyed MEHDIAN, 2016. "Measuring Financial Distress And Predicting Corporate Bankruptcy: An Index Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 17, pages 33-51, June.
    6. Parag C. Pendharkar, 2011. "Probabilistic Approaches For Credit Screening And Bankruptcy Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(4), pages 177-193, October.
    7. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    8. Christian Lohmann & Thorsten Ohliger, 2017. "Nonlinear Relationships and Their Effect on the Bankruptcy Prediction," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 261-287, August.
    9. Jones, Stewart & Wang, Tim, 2019. "Predicting private company failure: A multi-class analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 161-188.
    10. Akarsh Kainth & Ranik Raaen Wahlstrøm, 2021. "Do IFRS Promote Transparency? Evidence from the Bankruptcy Prediction of Privately Held Swedish and Norwegian Companies," JRFM, MDPI, vol. 14(3), pages 1-15, March.
    11. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    12. Deni Memic, 2015. "Assessing Credit Default using Logistic Regression and Multiple Discriminant Analysis: Empirical Evidence from Bosnia and Herzegovina," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 13(1), pages 128-153.
    13. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    14. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    15. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    16. repec:ctc:sdimse:dime21_01 is not listed on IDEAS
    17. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    18. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
    19. P Pendharkar, 2009. "Misclassification cost minimizing fitness functions for genetic algorithm-based artificial neural network classifiers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1123-1134, August.
    20. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    21. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbvent:v:18:y:2003:i:6:p:745-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusvent .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.