IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00544881.html
   My bibliography  Save this paper

La pertinence des cash-flows d'exploitation et de l'information financière traditionnelle dans la prévision de la détresse financière des entreprises tunisiennes

Author

Listed:
  • Saoussen Boujelben

    (ISCAE de Tunis - ISCAE)

  • Fedhila Hassouna

    (ISCAE de Tunis - ISCAE)

Abstract

L'objectif de cet article est de valider la pertinence des cash-flows d'exploitation dans le domaine de prévision des difficultés financières. Il s'agit de vérifier si l'information renseignant sur les cash-flows d'exploitation prévoit mieux la cessation de paiement que l'information comptable basée sur les accruals. L'étude empirique ainsi menée sur 278 observations, a permis de se prononcer sur la supériorité des modèles LOGIT basés sur les cash-flows, par rapport à ceux basés sur l'information financière traditionnelle en terme de prévision de la cessation de paiement, et ce par la simple référence à leurs pouvoirs prédictifs. Toutefois, cette supériorité n'a été statistiquement validée par le test de Davidson & Mackinon (1981) que pour la prévision deux et trois ans à l'avance.

Suggested Citation

  • Saoussen Boujelben & Fedhila Hassouna, 2007. "La pertinence des cash-flows d'exploitation et de l'information financière traditionnelle dans la prévision de la détresse financière des entreprises tunisiennes," Post-Print halshs-00544881, HAL.
  • Handle: RePEc:hal:journl:halshs-00544881
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00544881
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00544881/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Casey, C & Bartczak, N, 1985. "Using Operating Cash Flow Data To Predict Financial Distress - Some Extensions," Journal of Accounting Research, Wiley Blackwell, vol. 23(1), pages 384-401.
    2. Andreas Charitou & Colin Clubb, 1999. "Earnings, Cash Flows and Security Returns Over Long Return Intervals: Analysis and UK Evidence," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 26(3‐4), pages 283-312, April.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. Thomas Plenborg, 1999. "An examination of the information content of Danish earnings and cash flows," Accounting and Business Research, Taylor & Francis Journals, vol. 30(1), pages 43-55.
    5. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    6. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    7. Andreas Charitou & Colin Clubb, 1999. "Earnings, Cash Flows and Security Returns Over Long Return Intervals: Analysis and UK Evidence," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 26(3-4), pages 283-312.
    8. Nelson, Karen K. & Barth, Mary E. & Cram, Donald, 2001. "Accruals and the Prediction of Future Cash Flows," Research Papers 1594r, Stanford University, Graduate School of Business.
    9. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    10. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    11. Finger, Ca, 1994. "The Ability Of Earnings To Predict Future Earnings And Cash Flow," Journal of Accounting Research, Wiley Blackwell, vol. 32(2), pages 210-223.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    2. Khushbu Agrawal, 2015. "Default Prediction Using Piotroski’s F-score," Global Business Review, International Management Institute, vol. 16(5_suppl), pages 175-186, October.
    3. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    4. Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
    5. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
    6. Nadine Levratto & Luc Tessier & Messaoud Zouikri, 2011. "Small, alone and poor: a merciless portrait of insolvent French firms, 2007-2010," EconomiX Working Papers 2011-36, University of Paris Nanterre, EconomiX.
    7. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    8. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    9. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    10. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    11. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    12. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    13. McGurr, Paul T. & DeVaney, Sharon A., 1998. "Predicting Business Failure of Retail Firms: An Analysis Using Mixed Industry Models," Journal of Business Research, Elsevier, vol. 43(3), pages 169-176, November.
    14. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    15. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    16. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    17. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    18. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    19. Almamy, Jeehan & Aston, John & Ngwa, Leonard N., 2016. "An evaluation of Altman's Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK," Journal of Corporate Finance, Elsevier, vol. 36(C), pages 278-285.
    20. Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00544881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.