IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v9y2005i1d10.1007_s10878-005-5485-2.html
   My bibliography  Save this article

Efficient Algorithms and Implementations for Optimizing the Sum of Linear Fractional Functions, with Applications

Author

Listed:
  • Danny Z. Chen

    (University of Notre Dame)

  • Ovidiu Daescu

    (University of Texas at Dallas)

  • Yang Dai

    (University of Illinois at Chicago)

  • Naoki Katoh

    (Kyoto University Katsura)

  • Xiaodong Wu

    (University of Texas-Pan American)

  • Jinhui Xu

    (State University of New York at Buffalo)

Abstract

This paper presents an improved algorithm for solving the sum of linear fractional functions (SOLF) problem in 1-D and 2-D. A key subproblem to our solution is the off-line ratio query (OLRQ) problem, which asks to find the optimal values of a sequence of m linear fractional functions (called ratios), each ratio subject to a feasible domain defined by O(n) linear constraints. Based on some geometric properties and the parametric linear programming technique, we develop an algorithm that solves the OLRQ problem in O((m+n)log (m+n)) time. The OLRQ algorithm can be used to speed up every iteration of a known iterative SOLF algorithm, from O(m(m+n)) time to O((m+n)log (m+n)), in 1-D and 2-D. Implementation results of our improved 1-D and 2-D SOLF algorithm have shown that in most cases it outperforms the commonly-used approaches for the SOLF problem. We also apply our techniques to some problems in computational geometry and other areas, improving the previous results.

Suggested Citation

  • Danny Z. Chen & Ovidiu Daescu & Yang Dai & Naoki Katoh & Xiaodong Wu & Jinhui Xu, 2005. "Efficient Algorithms and Implementations for Optimizing the Sum of Linear Fractional Functions, with Applications," Journal of Combinatorial Optimization, Springer, vol. 9(1), pages 69-90, February.
  • Handle: RePEc:spr:jcomop:v:9:y:2005:i:1:d:10.1007_s10878-005-5485-2
    DOI: 10.1007/s10878-005-5485-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-005-5485-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-005-5485-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nimrod Megiddo, 1979. "Combinatorial Optimization with Rational Objective Functions," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 414-424, November.
    2. Danny Z. Chen & Ovidiu Daescu & Xiaobo (Sharon) Hu & Xiaodong Wu & Jinhui Xu, 2001. "Determining an Optimal Penetration Among Weighted Regions in Two and Three Dimensions," Journal of Combinatorial Optimization, Springer, vol. 5(1), pages 59-79, March.
    3. Gabriel R. Bitran & Thomas L. Magnanti, 1976. "Duality and Sensitivity Analysis for Fractional Programs," Operations Research, INFORMS, vol. 24(4), pages 675-699, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viviane Köhler & Marcia Fampa & Olinto Araújo, 2013. "Mixed-Integer Linear Programming Formulations for the Software Clustering Problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 113-135, May.
    2. Takahito Kuno & Toshiyuki Masaki, 2013. "A practical but rigorous approach to sum-of-ratios optimization in geometric applications," Computational Optimization and Applications, Springer, vol. 54(1), pages 93-109, January.
    3. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    2. Oleksii Ursulenko & Sergiy Butenko & Oleg Prokopyev, 2013. "A global optimization algorithm for solving the minimum multiple ratio spanning tree problem," Journal of Global Optimization, Springer, vol. 56(3), pages 1029-1043, July.
    3. Steffen Rebennack & Ashwin Arulselvan & Lily Elefteriadou & Panos M. Pardalos, 2010. "Complexity analysis for maximum flow problems with arc reversals," Journal of Combinatorial Optimization, Springer, vol. 19(2), pages 200-216, February.
    4. Bart Smeulders & Laurens Cherchye & Bram De Rock & Frits C. R. Spieksma, 2013. "The Money Pump as a Measure of Revealed Preference Violations: A Comment," Journal of Political Economy, University of Chicago Press, vol. 121(6), pages 1248-1258.
    5. Hassin, Refael & Sarid, Anna, 2018. "Operations research applications of dichotomous search," European Journal of Operational Research, Elsevier, vol. 265(3), pages 795-812.
    6. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    7. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2016. "Budget-constrained minimum cost flows," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1720-1745, May.
    8. Jianzhong Zhang & Zhenhong Liu, 2002. "A General Model of Some Inverse Combinatorial Optimization Problems and Its Solution Method Under l ∞ Norm," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 207-227, June.
    9. Evgeny Gurevsky & Sergey Kovalev & Mikhail Y. Kovalyov, 2021. "Min-max controllable risk problems," 4OR, Springer, vol. 19(1), pages 93-101, March.
    10. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    11. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    12. Akiyoshi Shioura, 2015. "Polynomial-Time Approximation Schemes for Maximizing Gross Substitutes Utility Under Budget Constraints," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 192-225, February.
    13. Bajalinov, Erik B., 1999. "On an approach to the modelling of problems connected with conflicting economic interests," European Journal of Operational Research, Elsevier, vol. 116(3), pages 477-486, August.
    14. Hong Zheng & Yi-Chang Chiu & Pitu B. Mirchandani, 2015. "On the System Optimum Dynamic Traffic Assignment and Earliest Arrival Flow Problems," Transportation Science, INFORMS, vol. 49(1), pages 13-27, February.
    15. Chakravarti, N. & Wagelmans, A.P.M., 1997. "Calculation of Stability Radii for Combinatorial Optimization Problems," Econometric Institute Research Papers EI 9740/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Johannes O. Royset & R. Kevin Wood, 2007. "Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 175-184, May.
    17. Biró, Péter & Kern, Walter & Paulusma, Daniël & Wojuteczky, Péter, 2018. "The stable fixtures problem with payments," Games and Economic Behavior, Elsevier, vol. 108(C), pages 245-268.
    18. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    19. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    20. Abdullah N. Arslan & Ömer Eğecioğlu, 2004. "Dynamic Programming Based Approximation Algorithms for Sequence Alignment with Constraints," INFORMS Journal on Computing, INFORMS, vol. 16(4), pages 441-458, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:9:y:2005:i:1:d:10.1007_s10878-005-5485-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.