IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v84y2022i2d10.1007_s10898-022-01153-z.html
   My bibliography  Save this article

Hopping between distant basins

Author

Listed:
  • Maldon Goodridge

    (Queen Mary University of London)

  • John Moriarty

    (Queen Mary University of London)

  • Jure Vogrinc

    (University of Warwick)

  • Alessandro Zocca

    (Vrije Universiteit Amsterdam)

Abstract

We present and numerically analyse the Basin Hopping with Skipping (BH-S) algorithm for stochastic optimisation. This algorithm replaces the perturbation step of basin hopping (BH) with a so-called skipping mechanism from rare-event sampling. Empirical results on benchmark optimisation surfaces demonstrate that BH-S can improve performance relative to BH by encouraging non-local exploration, that is, by hopping between distant basins.

Suggested Citation

  • Maldon Goodridge & John Moriarty & Jure Vogrinc & Alessandro Zocca, 2022. "Hopping between distant basins," Journal of Global Optimization, Springer, vol. 84(2), pages 465-489, October.
  • Handle: RePEc:spr:jglopt:v:84:y:2022:i:2:d:10.1007_s10898-022-01153-z
    DOI: 10.1007/s10898-022-01153-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01153-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01153-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Reuven Rubinstein, 1999. "The Cross-Entropy Method for Combinatorial and Continuous Optimization," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 127-190, September.
    3. Hakon Tjelmeland & Bjorn Kare Hegstad, 2001. "Mode Jumping Proposals in MCMC," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(1), pages 205-223, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enlu Zhou & Xi Chen, 2013. "Sequential Monte Carlo simulated annealing," Journal of Global Optimization, Springer, vol. 55(1), pages 101-124, January.
    2. Nicolas Chopin & Christian Schafer, 2010. "Adaptive Monte Carlo on Multivariate Binary Sampling Spaces," Working Papers 2010-24, Center for Research in Economics and Statistics.
    3. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    4. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    5. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    6. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    7. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    8. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    9. Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
    10. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    11. Min Xie & Yuxin Du & Peijun Cheng & Wei Wei & Mingbo Liu, 2019. "A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit Commitment Problems," Energies, MDPI, vol. 12(3), pages 1-18, February.
    12. Jian Yang & Huadong Cheng, 2023. "Coupling Coordination between University Scientific & Technological Innovation and Sustainable Economic Development in China," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    13. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    14. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    15. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    16. Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.
    17. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    18. Reuven Y. Rubinstein, 2006. "How Many Needles are in a Haystack, or How to Solve #P-Complete Counting Problems Fast," Methodology and Computing in Applied Probability, Springer, vol. 8(1), pages 5-51, March.
    19. Ad Ridder & Bruno Tuffin, 2012. "Probabilistic Bounded Relative Error Property for Learning Rare Event Simulation Techniques," Tinbergen Institute Discussion Papers 12-103/III, Tinbergen Institute.
    20. Cabral, Celso Rômulo Barbosa & Bolfarine, Heleno & Pereira, José Raimundo Gomes, 2008. "Bayesian density estimation using skew student-t-normal mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5075-5090, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:84:y:2022:i:2:d:10.1007_s10898-022-01153-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.