IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v8y2006i1d10.1007_s11009-006-7287-0.html
   My bibliography  Save this article

How Many Needles are in a Haystack, or How to Solve #P-Complete Counting Problems Fast

Author

Listed:
  • Reuven Y. Rubinstein

    (Faculty of Industrial Engineering and Management, Technion)

Abstract

We present two randomized entropy-based algorithms for approximating quite general #P-complete counting problems, like the number of Hamiltonian cycles in a graph, the permanent, the number of self-avoiding walks and the satisfiability problem. In our algorithms we first cast the underlying counting problem into an associate rare-event probability estimation, and then apply dynamic importance sampling (IS) to estimate efficiently the desired counting quantity. We construct the IS distribution by using two different approaches: one based on the cross-entropy (CE) method and the other one on the stochastic version of the well known minimum entropy (MinxEnt) method. We also establish convergence of our algorithms and confidence intervals for some special settings and present supportive numerical results, which strongly suggest that both ones (CE and MinxEnt) have polynomial running time in the size of the problem.

Suggested Citation

  • Reuven Y. Rubinstein, 2006. "How Many Needles are in a Haystack, or How to Solve #P-Complete Counting Problems Fast," Methodology and Computing in Applied Probability, Springer, vol. 8(1), pages 5-51, March.
  • Handle: RePEc:spr:metcap:v:8:y:2006:i:1:d:10.1007_s11009-006-7287-0
    DOI: 10.1007/s11009-006-7287-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-006-7287-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-006-7287-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reuven Rubinstein, 1999. "The Cross-Entropy Method for Combinatorial and Continuous Optimization," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 127-190, September.
    2. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    3. R. Y. Rubinstein, 2005. "A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 5-50, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zdravko I. Botev & Dirk P. Kroese, 2008. "An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 471-505, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    2. R. Y. Rubinstein, 2005. "A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 5-50, March.
    3. Ad Ridder & Bruno Tuffin, 2012. "Probabilistic Bounded Relative Error Property for Learning Rare Event Simulation Techniques," Tinbergen Institute Discussion Papers 12-103/III, Tinbergen Institute.
    4. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    5. Tito Homem-de-Mello, 2007. "A Study on the Cross-Entropy Method for Rare-Event Probability Estimation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 381-394, August.
    6. M. Bayat & F. Hooshmand & S. A. MirHassani, 2024. "Scenario-based stochastic model and efficient cross-entropy algorithm for the risk-budgeting problem," Annals of Operations Research, Springer, vol. 341(2), pages 731-755, October.
    7. Ali Kadhem, Athraa & Abdul Wahab, Noor Izzri & Aris, Ishak & Jasni, Jasronita & Abdalla, Ahmed N., 2017. "Computational techniques for assessing the reliability and sustainability of electrical power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1175-1186.
    8. Zheng Peng & Donghua Wu & Quan Zheng, 2013. "A Level-Value Estimation Method and Stochastic Implementation for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 493-523, February.
    9. Alibrandi, Umberto, 2014. "A response surface method for stochastic dynamic analysis," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 44-53.
    10. Nguyen, Hoa T.M. & Chow, Andy H.F. & Ying, Cheng-shuo, 2021. "Pareto routing and scheduling of dynamic urban rail transit services with multi-objective cross entropy method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    11. Tai-Yu Ma & Jean-Patrick Lebacque, 2012. "Dynamic System Optimal Routing In Multimodal Transit Network," Working Papers hal-00740347, HAL.
    12. Zheng Peng & Donghua Wu & Wenxing Zhu, 2016. "The robust constant and its applications in random global search for unconstrained global optimization," Journal of Global Optimization, Springer, vol. 64(3), pages 469-482, March.
    13. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    14. Enlu Zhou & Xi Chen, 2013. "Sequential Monte Carlo simulated annealing," Journal of Global Optimization, Springer, vol. 55(1), pages 101-124, January.
    15. Casas-Ramírez, Martha-Selene & Camacho-Vallejo, José-Fernando & Martínez-Salazar, Iris-Abril, 2018. "Approximating solutions to a bilevel capacitated facility location problem with customer's patronization toward a list of preferences," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 369-386.
    16. Zdravko I. Botev & Dirk P. Kroese, 2008. "An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 471-505, December.
    17. Ferdinand Bollwein & Stephan Westphal, 2022. "Oblique decision tree induction by cross-entropy optimization based on the von Mises–Fisher distribution," Computational Statistics, Springer, vol. 37(5), pages 2203-2229, November.
    18. Dirk P. Kroese & Sergey Porotsky & Reuven Y. Rubinstein, 2006. "The Cross-Entropy Method for Continuous Multi-Extremal Optimization," Methodology and Computing in Applied Probability, Springer, vol. 8(3), pages 383-407, September.
    19. Jiaqiao Hu & Michael C. Fu & Steven I. Marcus, 2007. "A Model Reference Adaptive Search Method for Global Optimization," Operations Research, INFORMS, vol. 55(3), pages 549-568, June.
    20. Reuven Rubinstein, 2008. "Semi-Iterative Minimum Cross-Entropy Algorithms for Rare-Events, Counting, Combinatorial and Integer Programming," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 121-178, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:8:y:2006:i:1:d:10.1007_s11009-006-7287-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.