Consistency of statistical estimators of solutions to stochastic optimization problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-022-01125-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zvi Artstein & Sergiu Hart, 1981. "Law of Large Numbers for Random Sets and Allocation Processes," Mathematics of Operations Research, INFORMS, vol. 6(4), pages 485-492, November.
- Mihail Zervos, 1999. "On the Epiconvergence of Stochastic Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 495-508, May.
- Teemu Pennanen, 2005. "Epi-Convergent Discretizations of Multistage Stochastic Programs," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 245-256, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
- Quang, Nguyen Van & Giap, Duong Xuan, 2013. "Mosco convergence of SLLN for triangular arrays of rowwise independent random sets," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1117-1126.
- Michael Chen & Sanjay Mehrotra & Dávid Papp, 2015. "Scenario generation for stochastic optimization problems via the sparse grid method," Computational Optimization and Applications, Springer, vol. 62(3), pages 669-692, December.
- Lehmann, Bruce N., 2009. "The role of beliefs in inference for rational expectations models," Journal of Econometrics, Elsevier, vol. 150(2), pages 322-331, June.
- Teemu Pennanen, 2005. "Epi-Convergent Discretizations of Multistage Stochastic Programs," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 245-256, February.
- Boris Defourny & Damien Ernst & Louis Wehenkel, 2013. "Scenario Trees and Policy Selection for Multistage Stochastic Programming Using Machine Learning," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 488-501, August.
- Pedro Terán, 2016. "A Multivalued Strong Law of Large Numbers," Journal of Theoretical Probability, Springer, vol. 29(2), pages 349-358, June.
- Julien Keutchayan & Michel Gendreau & Antoine Saucier, 2017. "Quality evaluation of scenario-tree generation methods for solving stochastic programming problems," Computational Management Science, Springer, vol. 14(3), pages 333-365, July.
- Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
- Kemp, GCR, 2007. "On the Consistency of Approximate Maximizing Estimator Sequences in the Case of Quasiconcave Functions," Economics Discussion Papers 2879, University of Essex, Department of Economics.
- Rocha, Paula & Kuhn, Daniel, 2012. "Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules," European Journal of Operational Research, Elsevier, vol. 216(2), pages 397-408.
- Raffaello Seri & Christine Choirat, 2013. "Scenario Approximation of Robust and Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 590-614, August.
- Gah-Yi Ban & Jérémie Gallien & Adam J. Mersereau, 2019. "Dynamic Procurement of New Products with Covariate Information: The Residual Tree Method," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 798-815, October.
- Martin Šmíd, 2009. "The Expected loss in the discretization of multistage stochastic programming problems—estimation and convergence rate," Annals of Operations Research, Springer, vol. 165(1), pages 29-45, January.
- Tahir Ekin & Nicholas G. Polson & Refik Soyer, 2014. "Augmented Markov Chain Monte Carlo Simulation for Two-Stage Stochastic Programs with Recourse," Decision Analysis, INFORMS, vol. 11(4), pages 250-264, December.
More about this item
Keywords
Stochastic optimization; Stochastic mathematical programs; Infimal values; Statistical estimators; Consistency; Weak convergence; Epi-convergence; Epi/hypo-convergence; Tightness;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:83:y:2022:i:4:d:10.1007_s10898-022-01125-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.