IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v82y2022i4d10.1007_s10898-021-01030-1.html
   My bibliography  Save this article

On stationarity for nonsmooth multiobjective problems with vanishing constraints

Author

Listed:
  • Ali Sadeghieh

    (Islamic Azad University)

  • Nader Kanzi

    (Payame Noor University)

  • Giuseppe Caristi

    (University of Messina)

  • David Barilla

    (University of Messina)

Abstract

The aim of this paper is to develop first-order necessary and sufficient optimality conditions for nonsmooth multiobjective optimization problems with vanishing constraints. First of all, we introduce some data qualifications for the problem, and derive the comparisons between them. Secondly, based on the mentioned qualifications, we demonstrate some necessary optimality conditions, named strongly stationary conditions, at weakly efficient and efficient solutions of considered problem. Then, we show that the strongly stationary conditions are also sufficient for optimality. Finally, using the tightened problems, we establish other classes of qualifications and stationary conditions.

Suggested Citation

  • Ali Sadeghieh & Nader Kanzi & Giuseppe Caristi & David Barilla, 2022. "On stationarity for nonsmooth multiobjective problems with vanishing constraints," Journal of Global Optimization, Springer, vol. 82(4), pages 929-949, April.
  • Handle: RePEc:spr:jglopt:v:82:y:2022:i:4:d:10.1007_s10898-021-01030-1
    DOI: 10.1007/s10898-021-01030-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01030-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01030-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. F. Li, 2000. "Constraint Qualifications in Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 373-398, August.
    2. S. K. Mishra & B. B. Upadhyay & Le Thi Hoai An, 2014. "Lagrange Multiplier Characterizations of Solution Sets of Constrained Nonsmooth Pseudolinear Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 763-777, March.
    3. HALKIN, Hubert, 1974. "Implicit functions and optimization problems without continuous differentiability of the data," LIDAM Reprints CORE 184, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.
    5. Nooshin Movahedian, 2017. "Bounded Lagrange multiplier rules for general nonsmooth problems and application to mathematical programs with equilibrium constraints," Journal of Global Optimization, Springer, vol. 67(4), pages 829-850, April.
    6. Sajjad Kazemi & Nader Kanzi, 2018. "Constraint Qualifications and Stationary Conditions for Mathematical Programming with Non-differentiable Vanishing Constraints," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 800-819, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Huang & Haole Zhu, 2022. "Stationary Condition for Borwein Proper Efficient Solutions of Nonsmooth Multiobjective Problems with Vanishing Constraints," Mathematics, MDPI, vol. 10(23), pages 1-18, December.
    2. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajjad Kazemi & Nader Kanzi, 2018. "Constraint Qualifications and Stationary Conditions for Mathematical Programming with Non-differentiable Vanishing Constraints," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 800-819, December.
    2. Hui Huang & Haole Zhu, 2022. "Stationary Condition for Borwein Proper Efficient Solutions of Nonsmooth Multiobjective Problems with Vanishing Constraints," Mathematics, MDPI, vol. 10(23), pages 1-18, December.
    3. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.
    4. Le Thanh Tung, 2022. "Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints," Annals of Operations Research, Springer, vol. 311(2), pages 1307-1334, April.
    5. Tadeusz Antczak, 2022. "Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints," 4OR, Springer, vol. 20(3), pages 417-442, September.
    6. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    7. Tamanna Yadav & S. K. Gupta & Sumit Kumar, 2024. "Optimality analysis and duality conditions for a class of conic semi-infinite program having vanishing constraints," Annals of Operations Research, Springer, vol. 340(2), pages 1091-1123, September.
    8. Bhuwan Chandra Joshi & Murari Kumar Roy & Abdelouahed Hamdi, 2024. "On Semi-Infinite Optimization Problems with Vanishing Constraints Involving Interval-Valued Functions," Mathematics, MDPI, vol. 12(7), pages 1-19, March.
    9. X. F. Li & J. Z. Zhang, 2006. "Necessary Optimality Conditions in Terms of Convexificators in Lipschitz Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 429-452, December.
    10. Vivek Laha & Harsh Narayan Singh, 2023. "On quasidifferentiable mathematical programs with equilibrium constraints," Computational Management Science, Springer, vol. 20(1), pages 1-20, December.
    11. Do Van Luu & Manh-Hung Nguyen, 2006. "On alternative theorems and necessary conditions for efficiency," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00112454, HAL.
    12. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.
    13. Tadeusz Antczak, 2023. "On directionally differentiable multiobjective programming problems with vanishing constraints," Annals of Operations Research, Springer, vol. 328(2), pages 1181-1212, September.
    14. Nils Bertschinger & Axel A. Araneda, 2021. "Cross-ownership as a structural explanation for rising correlations in crisis times," Papers 2112.04824, arXiv.org.
    15. Doraszelski, Ulrich & Escobar, Juan F., 2019. "Protocol invariance and the timing of decisions in dynamic games," Theoretical Economics, Econometric Society, vol. 14(2), May.
    16. S. Nobakhtian, 2008. "Generalized (F,ρ)-Convexity and Duality in Nonsmooth Problems of Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 61-68, January.
    17. Andreas Fischer & Alexey F. Izmailov & Mario Jelitte, 2023. "Stability of Singular Solutions of Nonlinear Equations with Restricted Smoothness Assumptions," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 1008-1035, March.
    18. Balendu Bhooshan Upadhyay & Shubham Kumar Singh & Ioan Stancu-Minasian, 2024. "Constraint Qualifications and Optimality Conditions for Nonsmooth Semidefinite Multiobjective Programming Problems with Mixed Constraints Using Convexificators," Mathematics, MDPI, vol. 12(20), pages 1-21, October.
    19. Qingjie Hu & Jiguang Wang & Yu Chen, 2020. "New dualities for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 287(1), pages 233-255, April.
    20. Manh-Hung Nguyen & Do Van Luu, 2006. "On necessary conditions for efficiency in directionally differentiable optimization problems," Post-Print halshs-00118977, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:82:y:2022:i:4:d:10.1007_s10898-021-01030-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.