IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v82y2022i3d10.1007_s10898-021-01095-y.html
   My bibliography  Save this article

Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems

Author

Listed:
  • Bing Tan

    (University of Electronic Science and Technology of China)

  • Xiaolong Qin

    (Hangzhou Normal University)

  • Jen-Chih Yao

    (China Medical University
    National Sun Yat-sen University)

Abstract

This paper investigates some inertial projection and contraction methods for solving pseudomonotone variational inequality problems in real Hilbert spaces. The algorithms use a new non-monotonic step size so that they can work without the prior knowledge of the Lipschitz constant of the operator. Strong convergence theorems of the suggested algorithms are obtained under some suitable conditions. Some numerical experiments in finite- and infinite-dimensional spaces and applications in optimal control problems are implemented to demonstrate the performance of the suggested schemes and we also compare them with several related results.

Suggested Citation

  • Bing Tan & Xiaolong Qin & Jen-Chih Yao, 2022. "Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems," Journal of Global Optimization, Springer, vol. 82(3), pages 523-557, March.
  • Handle: RePEc:spr:jglopt:v:82:y:2022:i:3:d:10.1007_s10898-021-01095-y
    DOI: 10.1007/s10898-021-01095-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01095-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01095-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haiying Li & Yulian Wu & Fenghui Wang & Xiaolong Qin, 2021. "New Inertial Relaxed CQ Algorithms for Solving Split Feasibility Problems in Hilbert Spaces," Journal of Mathematics, Hindawi, vol. 2021, pages 1-13, February.
    2. J. Preininger & P. T. Vuong, 2018. "On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions," Computational Optimization and Applications, Springer, vol. 70(1), pages 221-238, May.
    3. Q. L. Dong & Y. J. Cho & L. L. Zhong & Th. M. Rassias, 2018. "Inertial projection and contraction algorithms for variational inequalities," Journal of Global Optimization, Springer, vol. 70(3), pages 687-704, March.
    4. Yekini Shehu & Aviv Gibali & Simone Sagratella, 2020. "Inertial Projection-Type Methods for Solving Quasi-Variational Inequalities in Real Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 877-894, March.
    5. Akhtar A. Khan & Dumitru Motreanu, 2015. "Existence Theorems for Elliptic and Evolutionary Variational and Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 1136-1161, December.
    6. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    7. Hongwei Liu & Jun Yang, 2020. "Weak convergence of iterative methods for solving quasimonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 77(2), pages 491-508, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javad Balooee & Shih-Sen Chang & Lin Wang & Zhaoli Ma, 2022. "Algorithmic Aspect and Convergence Analysis for System of Generalized Multivalued Variational-like Inequalities," Mathematics, MDPI, vol. 10(12), pages 1-40, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    2. Duong Viet Thong & Phan Tu Vuong & Pham Ky Anh & Le Dung Muu, 2022. "A New Projection-type Method with Nondecreasing Adaptive Step-sizes for Pseudo-monotone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 22(4), pages 803-829, December.
    3. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    4. Ming Tian & Meng-Ying Tong, 2019. "Extension and Application of the Yamada Iteration Algorithm in Hilbert Spaces," Mathematics, MDPI, vol. 7(3), pages 1-13, February.
    5. Bingnan Jiang & Yuanheng Wang & Jen-Chih Yao, 2021. "Multi-Step Inertial Regularized Methods for Hierarchical Variational Inequality Problems Involving Generalized Lipschitzian Mappings," Mathematics, MDPI, vol. 9(17), pages 1-20, August.
    6. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    7. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    8. Xin He & Nan-jing Huang & Xue-song Li, 2022. "Modified Projection Methods for Solving Multi-valued Variational Inequality without Monotonicity," Networks and Spatial Economics, Springer, vol. 22(2), pages 361-377, June.
    9. Lateef Olakunle Jolaoso & Maggie Aphane, 2020. "A Generalized Viscosity Inertial Projection and Contraction Method for Pseudomonotone Variational Inequality and Fixed Point Problems," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    10. Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2024. "Strong Convergent Inertial Two-subgradient Extragradient Method for Finding Minimum-norm Solutions of Variational Inequality Problems," Networks and Spatial Economics, Springer, vol. 24(2), pages 425-459, June.
    11. Hongwei Liu & Jun Yang, 2020. "Weak convergence of iterative methods for solving quasimonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 77(2), pages 491-508, November.
    12. Gang Cai & Qiao-Li Dong & Yu Peng, 2021. "Strong Convergence Theorems for Solving Variational Inequality Problems with Pseudo-monotone and Non-Lipschitz Operators," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 447-472, February.
    13. Chinedu Izuchukwu & Yekini Shehu & Jen-Chih Yao, 2022. "New inertial forward-backward type for variational inequalities with Quasi-monotonicity," Journal of Global Optimization, Springer, vol. 84(2), pages 441-464, October.
    14. Lu-Chuan Ceng & Ching-Feng Wen & Yeong-Cheng Liou & Jen-Chih Yao, 2022. "On Strengthened Inertial-Type Subgradient Extragradient Rule with Adaptive Step Sizes for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    15. Yonghong Yao & Ke Wang & Xiaowei Qin & Li-Jun Zhu, 2019. "Extension of Extragradient Techniques for Variational Inequalities," Mathematics, MDPI, vol. 7(2), pages 1-11, January.
    16. Jolaoso, Lateef O. & Shehu, Yekini & Yao, Jen-Chih, 2022. "Inertial extragradient type method for mixed variational inequalities without monotonicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 353-369.
    17. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    18. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    19. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    20. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:82:y:2022:i:3:d:10.1007_s10898-021-01095-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.