IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/6624509.html
   My bibliography  Save this article

New Inertial Relaxed CQ Algorithms for Solving Split Feasibility Problems in Hilbert Spaces

Author

Listed:
  • Haiying Li
  • Yulian Wu
  • Fenghui Wang
  • Xiaolong Qin

Abstract

The split feasibility problem SFP has received much attention due to its various applications in signal processing and image reconstruction. In this paper, we propose two inertial relaxed CQ algorithms for solving the split feasibility problem in real Hilbert spaces according to the previous experience of applying inertial technology to the algorithm. These algorithms involve metric projections onto half-spaces, and we construct new variable step size, which has an exact form and does not need to know a prior information norm of bounded linear operators. Furthermore, we also establish weak and strong convergence of the proposed algorithms under certain mild conditions and present a numerical experiment to illustrate the performance of the proposed algorithms.

Suggested Citation

  • Haiying Li & Yulian Wu & Fenghui Wang & Xiaolong Qin, 2021. "New Inertial Relaxed CQ Algorithms for Solving Split Feasibility Problems in Hilbert Spaces," Journal of Mathematics, Hindawi, vol. 2021, pages 1-13, February.
  • Handle: RePEc:hin:jjmath:6624509
    DOI: 10.1155/2021/6624509
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2021/6624509.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2021/6624509.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6624509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Che, Haitao & Liu, Kaiping & Chen, Haibin & Yan, Hong, 2023. "Second order self-adaptive dynamical system for sparse signal reconstruction and applications to image recovery," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    2. Peeyada, Pronpat & Suparatulatorn, Raweerote & Cholamjiak, Watcharaporn, 2022. "An inertial Mann forward-backward splitting algorithm of variational inclusion problems and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Bing Tan & Xiaolong Qin & Jen-Chih Yao, 2022. "Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems," Journal of Global Optimization, Springer, vol. 82(3), pages 523-557, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:6624509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.