IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i3d10.1007_s10898-021-01086-z.html
   My bibliography  Save this article

Improved interval methods for solving circle packing problems in the unit square

Author

Listed:
  • Mihály Csaba Markót

    (University of Vienna)

Abstract

In this work computer-assisted optimality proofs are given for the problems of finding the densest packings of 31, 32, and 33 non-overlapping equal circles in a square. In a study of 2005, a fully interval arithmetic based global optimization method was introduced for the problem class, solving the cases 28, 29, 30. Until now, these were the largest problem instances solved on a computer. Using the techniques of that paper, the estimated solution time for the next three cases would have been 3–6 CPU months. In the present paper this former method is improved in both its local and global search phases. We discuss a new interval-based polygon representation of the core local method for eliminating suboptimal regions, which has a simpler implementation, easier proof of correctness, and faster behaviour than the former one. Furthermore, a modified strategy is presented for the global phase of the search, including improved symmetry filtering and tile pattern matching. With the new method the cases $$n=31,32,33$$ n = 31 , 32 , 33 have been solved in 26, 61, and 13 CPU hours, giving high precision enclosures for all global optimizers and the optimum value. After eliminating the hardware and compiler improvements since the former study, the new proof technique became roughly about 40–100 times faster than the previous one. In addition, the new implementation is suitable for solving the next few circle packing instances with similar computational effort.

Suggested Citation

  • Mihály Csaba Markót, 2021. "Improved interval methods for solving circle packing problems in the unit square," Journal of Global Optimization, Springer, vol. 81(3), pages 773-803, November.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:3:d:10.1007_s10898-021-01086-z
    DOI: 10.1007/s10898-021-01086-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01086-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01086-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. G. Szabó & M. Cs. Markót & T. Csendes & E. Specht & L. G. Casado & I. García, 2007. "New Approaches to Circle Packing in a Square," Springer Optimization and Its Applications, Springer, number 978-0-387-45676-8, July.
    2. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stevanovic Dalibor, 2016. "Common time variation of parameters in reduced-form macroeconomic models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 159-183, April.
    2. Chiara Oostuizen & Sara S. Grobbelaar & Wouter G. Bam, 2018. "Project Portfolio Management Best Practice and Implementation: A South African Perspective," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-24, August.
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. José M. Maisog & Andrew T. DeMarco & Karthik Devarajan & Stanley Young & Paul Fogel & George Luta, 2021. "Assessing Methods for Evaluating the Number of Components in Non-Negative Matrix Factorization," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    5. Lennart Bondesson, 2002. "On the Lévy Measure of the Lognormal and the LogCauchy Distributions," Methodology and Computing in Applied Probability, Springer, vol. 4(3), pages 243-256, September.
    6. A. Fadlelmawla & M. Al-Otaibi, 2005. "Analysis of the Water Resources Status in Kuwait," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 555-570, October.
    7. Shipra Agrawal & Yichuan Ding & Amin Saberi & Yinyu Ye, 2012. "Price of Correlations in Stochastic Optimization," Operations Research, INFORMS, vol. 60(1), pages 150-162, February.
    8. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    9. Duan, Jinyun & Li, Chenwei & Xu, Yue & Wu, Chia-Huei, 2017. "Transformational leadership and employee voice behavior: a Pygmalion mechanism," LSE Research Online Documents on Economics 68035, London School of Economics and Political Science, LSE Library.
    10. Hota, Monali & Bartsch, Fabian, 2019. "Consumer socialization in childhood and adolescence: Impact of psychological development and family structure," Journal of Business Research, Elsevier, vol. 105(C), pages 11-20.
    11. Heydari, Mohammadhossein & Sullivan, Kelly M., 2019. "Robust allocation of testing resources in reliability growth," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    12. Abernethy, Margaret A. & Vagnoni, Emidia, 2004. "Power, organization design and managerial behaviour," Accounting, Organizations and Society, Elsevier, vol. 29(3-4), pages 207-225.
    13. Dimitrios Letsios & Jeremy T. Bradley & Suraj G & Ruth Misener & Natasha Page, 2021. "Approximate and robust bounded job start scheduling for Royal Mail delivery offices," Journal of Scheduling, Springer, vol. 24(2), pages 237-258, April.
    14. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    15. Nearchou, Andreas C., 2006. "Meta-heuristics from nature for the loop layout design problem," International Journal of Production Economics, Elsevier, vol. 101(2), pages 312-328, June.
    16. Peter Burnell, 2008. "From Evaluating Democracy Assistance to Appraising Democracy Promotion," Political Studies, Political Studies Association, vol. 56(2), pages 414-434, June.
    17. Güray Kara & Ayşe Özmen & Gerhard-Wilhelm Weber, 2019. "Stability advances in robust portfolio optimization under parallelepiped uncertainty," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 241-261, March.
    18. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    19. Mammassis, Constantinos S. & Kostopoulos, Konstantinos C., 2019. "CEO goal orientations, environmental dynamism and organizational ambidexterity: An investigation in SMEs," European Management Journal, Elsevier, vol. 37(5), pages 577-588.
    20. Eduardo Casas & Christopher Ryll & Fredi Tröltzsch, 2018. "Optimal control of a class of reaction–diffusion systems," Computational Optimization and Applications, Springer, vol. 70(3), pages 677-707, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:3:d:10.1007_s10898-021-01086-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.