IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v75y2020i2d10.1007_s10589-019-00153-2.html
   My bibliography  Save this article

A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems

Author

Listed:
  • Ken Kobayashi

    (Fujitsu Laboratories LTD.)

  • Yuich Takano

    (University of Tsukuba)

Abstract

We consider a cutting-plane algorithm for solving mixed-integer semidefinite optimization (MISDO) problems. In this algorithm, the positive semidefinite (psd) constraint is relaxed, and the resultant mixed-integer linear optimization problem is solved repeatedly, imposing at each iteration a valid inequality for the psd constraint. We prove the convergence properties of the algorithm. Moreover, to speed up the computation, we devise a branch-and-cut algorithm, in which valid inequalities are dynamically added during a branch-and-bound procedure. We test the computational performance of our cutting-plane and branch-and-cut algorithms for three types of MISDO problem: random instances, computing restricted isometry constants, and robust truss topology design. Our experimental results demonstrate that, for many problem instances, our branch-and-cut algorithm delivered superior performance compared with general-purpose MISDO solvers in terms of computational efficiency and stability.

Suggested Citation

  • Ken Kobayashi & Yuich Takano, 2020. "A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems," Computational Optimization and Applications, Springer, vol. 75(2), pages 493-513, March.
  • Handle: RePEc:spr:coopap:v:75:y:2020:i:2:d:10.1007_s10589-019-00153-2
    DOI: 10.1007/s10589-019-00153-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00153-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00153-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adelaide Cerveira & Agostinho Agra & Fernando Bastos & Joaquim Gromicho, 2013. "A new Branch and Bound method for a discrete truss topology design problem," Computational Optimization and Applications, Springer, vol. 54(1), pages 163-187, January.
    2. Gábor Braun & Samuel Fiorini & Sebastian Pokutta & David Steurer, 2015. "Approximation Limits of Linear Programs (Beyond Hierarchies)," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 756-772, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    2. Yuzhu Wang & Akihiro Tanaka & Akiko Yoshise, 2021. "Polyhedral approximations of the semidefinite cone and their application," Computational Optimization and Applications, Springer, vol. 78(3), pages 893-913, April.
    3. Katsuhiro Tanaka & Rei Yamamoto, 2023. "Ellipsoidal buffered area under the curve maximization model with variable selection in credit risk estimation," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Meijer, Frank, 2023. "Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization," Other publications TiSEM b1f1088c-95fe-4b8a-9e15-c, Tilburg University, School of Economics and Management.
    2. Flemming Holtorf & Paul I. Barton, 2024. "Tighter Bounds on Transient Moments of Stochastic Chemical Systems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 104-149, January.
    3. Gribling, Sander & Laat, David de & Laurent, Monique, 2017. "Lower Bounds on Matrix Factorization Ranks via Noncommutative Polynomial Optimization," Other publications TiSEM 2dddf156-3d4b-4936-bf02-a, Tilburg University, School of Economics and Management.
    4. Yoshihiro Kanno, 2016. "Global optimization of trusses with constraints on number of different cross-sections: a mixed-integer second-order cone programming approach," Computational Optimization and Applications, Springer, vol. 63(1), pages 203-236, January.
    5. Abbas Bazzi & Samuel Fiorini & Sebastian Pokutta & Ola Svensson, 2019. "No Small Linear Program Approximates Vertex Cover Within a Factor 2 − ɛ," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 147-172, February.
    6. Kobayashi, Ken & Takano, Yuichi & Nakata, Kazuhide, 2023. "Cardinality-constrained distributionally robust portfolio optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1173-1182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:75:y:2020:i:2:d:10.1007_s10589-019-00153-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.