IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v77y2020i3d10.1007_s10898-020-00883-2.html
   My bibliography  Save this article

Global dynamic optimization using edge-concave underestimator

Author

Listed:
  • Ishan Bajaj

    (Texas A&M University)

  • M. M. Faruque Hasan

    (Texas A&M University)

Abstract

Optimization of problems with embedded system of ordinary differential equations (ODEs) is challenging and the difficulty is amplified due to the presence of nonconvexity. In this article, a deterministic global optimization method is presented for systems consisting of an objective function and constraints with integral terms and an embedded set of nonlinear parametric ODEs. The method is based on a branch-and-bound algorithm that uses a new class of underestimators recently proposed by Hasan (J Glob Optim 71:735–752, 2018). At each node of the branch-and-bound tree, instead of using a convex relaxation, an edge-concave underestimator or the linear facets of its convex envelope is used to compute a lower bound. The underestimator is constructed by finding valid upper bounds on the diagonal elements of the Hessian matrix of the nonconvex terms. Time dependent bounds on the state variables and diagonal elements of the Hessian are obtained by solving an auxiliary set of ODEs that is derived using the notion of differential inequalities. The performance of the edge-concave relaxation is compared to other approaches on several test problems.

Suggested Citation

  • Ishan Bajaj & M. M. Faruque Hasan, 2020. "Global dynamic optimization using edge-concave underestimator," Journal of Global Optimization, Springer, vol. 77(3), pages 487-512, July.
  • Handle: RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00883-2
    DOI: 10.1007/s10898-020-00883-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00883-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00883-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Di Pillo & G. Liuzzi & S. Lucidi & V. Piccialli & F. Rinaldi, 2016. "A DIRECT-type approach for derivative-free constrained global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 361-397, November.
    2. Sebastian Sager & Mathieu Claeys & Frédéric Messine, 2015. "Efficient upper and lower bounds for global mixed-integer optimal control," Journal of Global Optimization, Springer, vol. 61(4), pages 721-743, April.
    3. Boris Houska & Benoît Chachuat, 2014. "Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 208-248, July.
    4. Joseph Scott & Paul Barton, 2013. "Improved relaxations for the parametric solutions of ODEs using differential inequalities," Journal of Global Optimization, Springer, vol. 57(1), pages 143-176, September.
    5. Mario Villanueva & Boris Houska & Benoît Chachuat, 2015. "Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs," Journal of Global Optimization, Springer, vol. 62(3), pages 575-613, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    2. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    3. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    4. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    5. Jorge Miranda-Pino & Daniel Murphy & Kieran Walsh & Eric Young, 2020. "A Model of Expenditure Shocks," Working Papers 20-04, Federal Reserve Bank of Cleveland.
    6. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    7. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    8. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    9. Dario Bauso & Quanyan Zhu & Tamer Başar, 2016. "Decomposition and Mean-Field Approach to Mixed Integer Optimal Compensation Problems," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 606-630, May.
    10. Jason Ye & Joseph K. Scott, 2023. "Extended McCormick relaxation rules for handling empty arguments representing infeasibility," Journal of Global Optimization, Springer, vol. 87(1), pages 57-95, September.
    11. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    12. Kamil A. Khan & Paul I. Barton, 2014. "Generalized Derivatives for Solutions of Parametric Ordinary Differential Equations with Non-differentiable Right-Hand Sides," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 355-386, November.
    13. Matthew E. Wilhelm & Matthew D. Stuber, 2023. "Improved Convex and Concave Relaxations of Composite Bilinear Forms," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 174-204, April.
    14. Stefano Lucidi & Mauro Passacantando & Francesco Rinaldi, 2022. "Solving non-monotone equilibrium problems via a DIRECT-type approach," Journal of Global Optimization, Springer, vol. 83(4), pages 699-725, August.
    15. Kamil A. Khan & Harry A. J. Watson & Paul I. Barton, 2017. "Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 67(4), pages 687-729, April.
    16. Boris Houska & Benoît Chachuat, 2014. "Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 208-248, July.
    17. Candelieri Antonio, 2021. "Sequential model based optimization of partially defined functions under unknown constraints," Journal of Global Optimization, Springer, vol. 79(2), pages 281-303, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00883-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.