IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v197y2023i1d10.1007_s10957-023-02196-2.html
   My bibliography  Save this article

Improved Convex and Concave Relaxations of Composite Bilinear Forms

Author

Listed:
  • Matthew E. Wilhelm

    (University of Connecticut)

  • Matthew D. Stuber

    (University of Connecticut)

Abstract

Deterministic nonconvex optimization solvers generate convex relaxations of nonconvex functions by making use of underlying factorable representations. One approach introduces auxiliary variables assigned to each factor that lifts the problem into a higher-dimensional decision space. In contrast, a generalized McCormick relaxation approach offers the significant advantage of constructing relaxations in the lower dimensionality space of the original problem without introducing auxiliary variables, often referred to as a “reduced-space” approach. Recent contributions illustrated how additional nontrivial inequality constraints may be used in factorable programming to tighten relaxations of the ubiquitous bilinear term. In this work, we exploit an analogous representation of McCormick relaxations and factorable programming to formulate tighter relaxations in the original decision space. We develop the underlying theory to generate necessarily tighter reduced-space McCormick relaxations when a priori convex/concave relaxations are known for intermediate bilinear terms. We then show how these rules can be generalized within a McCormick relaxation scheme via three different approaches: the use of a McCormick relaxations coupled to affine arithmetic, the propagation of affine relaxations implied by subgradients, and an enumerative approach that directly uses relaxations of each factor. The developed approaches are benchmarked on a library of optimization problems using the EAGO.jl optimizer. Two case studies are also considered to demonstrate the developments: an application in advanced manufacturing to optimize supply chain quality metrics and a global dynamic optimization application for rigorous model validation of a kinetic mechanism. The presented subgradient method leads to an improvement in CPU time required to solve the considered problems to $$\epsilon $$ ϵ -global optimality.

Suggested Citation

  • Matthew E. Wilhelm & Matthew D. Stuber, 2023. "Improved Convex and Concave Relaxations of Composite Bilinear Forms," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 174-204, April.
  • Handle: RePEc:spr:joptap:v:197:y:2023:i:1:d:10.1007_s10957-023-02196-2
    DOI: 10.1007/s10957-023-02196-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02196-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02196-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Watson, Harry A.J. & Vikse, Matias & Gundersen, Truls & Barton, Paul I., 2018. "Optimization of single mixed-refrigerant natural gas liquefaction processes described by nondifferentiable models," Energy, Elsevier, vol. 150(C), pages 860-876.
    2. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.
    3. Joseph Scott & Matthew Stuber & Paul Barton, 2011. "Generalized McCormick relaxations," Journal of Global Optimization, Springer, vol. 51(4), pages 569-606, December.
    4. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    5. Kamil A. Khan & Matthew Wilhelm & Matthew D. Stuber & Huiyi Cao & Harry A. J. Watson & Paul I. Barton, 2018. "Corrections to: Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 70(3), pages 705-706, March.
    6. Achim Wechsung & Joseph Scott & Harry Watson & Paul Barton, 2015. "Reverse propagation of McCormick relaxations," Journal of Global Optimization, Springer, vol. 63(1), pages 1-36, September.
    7. Jaromił Najman & Alexander Mitsos, 2019. "Tighter McCormick relaxations through subgradient propagation," Journal of Global Optimization, Springer, vol. 75(3), pages 565-593, November.
    8. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.
    9. James E. Falk & Karla L. Hoffman, 1986. "Concave Minimization Via Collapsing Polytopes," Operations Research, INFORMS, vol. 34(6), pages 919-929, December.
    10. Jaromił Najman & Dominik Bongartz & Angelos Tsoukalas & Alexander Mitsos, 2017. "Erratum to: Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 68(1), pages 219-225, May.
    11. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    12. Joseph Scott & Paul Barton, 2013. "Improved relaxations for the parametric solutions of ODEs using differential inequalities," Journal of Global Optimization, Springer, vol. 57(1), pages 143-176, September.
    13. A. Tsoukalas & A. Mitsos, 2014. "Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 59(2), pages 633-662, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    2. Matthew E. Wilhelm & Chenyu Wang & Matthew D. Stuber, 2023. "Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization," Journal of Global Optimization, Springer, vol. 85(3), pages 569-594, March.
    3. Jason Ye & Joseph K. Scott, 2023. "Extended McCormick relaxation rules for handling empty arguments representing infeasibility," Journal of Global Optimization, Springer, vol. 87(1), pages 57-95, September.
    4. Kamil A. Khan & Harry A. J. Watson & Paul I. Barton, 2017. "Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 67(4), pages 687-729, April.
    5. Jaromił Najman & Alexander Mitsos, 2019. "Tighter McCormick relaxations through subgradient propagation," Journal of Global Optimization, Springer, vol. 75(3), pages 565-593, November.
    6. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    7. Chrysoula D. Kappatou & Dominik Bongartz & Jaromił Najman & Susanne Sass & Alexander Mitsos, 2022. "Global dynamic optimization with Hammerstein–Wiener models embedded," Journal of Global Optimization, Springer, vol. 84(2), pages 321-347, October.
    8. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    9. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.
    10. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    11. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    12. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    13. Rohit Kannan & Paul I. Barton, 2018. "Convergence-order analysis of branch-and-bound algorithms for constrained problems," Journal of Global Optimization, Springer, vol. 71(4), pages 753-813, August.
    14. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.
    15. Sass, Susanne & Mitsos, Alexander & Bongartz, Dominik & Bell, Ian H. & Nikolov, Nikolay I. & Tsoukalas, Angelos, 2024. "A branch-and-bound algorithm with growing datasets for large-scale parameter estimation," European Journal of Operational Research, Elsevier, vol. 316(1), pages 36-45.
    16. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    17. A. Skjäl & T. Westerlund & R. Misener & C. A. Floudas, 2012. "A Generalization of the Classical αBB Convex Underestimation via Diagonal and Nondiagonal Quadratic Terms," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 462-490, August.
    18. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    19. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    20. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:197:y:2023:i:1:d:10.1007_s10957-023-02196-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.