IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v76y2020i4d10.1007_s10898-019-00819-5.html
   My bibliography  Save this article

A Gauss–Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems

Author

Listed:
  • Xue Gao

    (Nanjing Normal University)

  • Xingju Cai

    (Nanjing Normal University)

  • Deren Han

    (Beihang University)

Abstract

In this paper we study a broad class of nonconvex and nonsmooth minimization problems, whose objective function is the sum of a smooth function of the entire variables and two nonsmooth functions of each variable. We adopt the framework of the proximal alternating linearized minimization (PALM), together with the inertial strategy to accelerate the convergence. Since the inertial step is performed once the x-subproblem/y-subproblem is updated, the algorithm is a Gauss–Seidel type inertial proximal alternating linearized minimization (GiPALM) algorithm. Under the assumption that the underlying functions satisfy the Kurdyka–Łojasiewicz (KL) property and some suitable conditions on the parameters, we prove that each bounded sequence generated by GiPALM globally converges to a critical point. We apply the algorithm to signal recovery, image denoising and nonnegative matrix factorization models, and compare it with PALM and the inertial proximal alternating linearized minimization.

Suggested Citation

  • Xue Gao & Xingju Cai & Deren Han, 2020. "A Gauss–Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 76(4), pages 863-887, April.
  • Handle: RePEc:spr:jglopt:v:76:y:2020:i:4:d:10.1007_s10898-019-00819-5
    DOI: 10.1007/s10898-019-00819-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00819-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00819-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boţ, Radu Ioan & Csetnek, Ernö Robert & Hendrich, Christopher, 2015. "Inertial Douglas–Rachford splitting for monotone inclusion problems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 472-487.
    2. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    3. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Gao & Xingju Cai & Xiangfeng Wang & Deren Han, 2023. "An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant," Journal of Global Optimization, Springer, vol. 87(1), pages 277-300, September.
    2. Jing Zhao & Qiao-Li Dong & Michael Th. Rassias & Fenghui Wang, 2022. "Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems," Journal of Global Optimization, Springer, vol. 84(4), pages 941-966, December.
    3. Zhongming Wu & Chongshou Li & Min Li & Andrew Lim, 2021. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 79(3), pages 617-644, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    2. Szilárd Csaba László, 2023. "A Forward–Backward Algorithm With Different Inertial Terms for Structured Non-Convex Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 387-427, July.
    3. Radu Ioan Boţ & Ernö Robert Csetnek, 2016. "An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 600-616, November.
    4. Ziyuan Wang & Andreas Themelis & Hongjia Ou & Xianfu Wang, 2024. "A Mirror Inertial Forward–Reflected–Backward Splitting: Convergence Analysis Beyond Convexity and Lipschitz Smoothness," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1127-1159, November.
    5. Dongdong Zhang & Shaohua Pan & Shujun Bi & Defeng Sun, 2023. "Zero-norm regularized problems: equivalent surrogates, proximal MM method and statistical error bound," Computational Optimization and Applications, Springer, vol. 86(2), pages 627-667, November.
    6. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    7. Lei Yang, 2024. "Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 68-103, January.
    8. Guo, Chuanyin & Song, Qiwei & Yu, Ming-Miin & Zhang, Jian, 2024. "A digital economy development index based on an improved hierarchical data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1146-1157.
    9. A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
    10. Hedy Attouch & Zaki Chbani & Jalal Fadili & Hassan Riahi, 2022. "Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 704-736, June.
    11. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    12. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    13. E. M. Bednarczuk & A. Jezierska & K. E. Rutkowski, 2018. "Proximal primal–dual best approximation algorithm with memory," Computational Optimization and Applications, Springer, vol. 71(3), pages 767-794, December.
    14. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    15. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    16. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    17. Perraudin, Nathanaël & Holighaus, Nicki & Søndergaard, Peter L. & Balazs, Peter, 2018. "Designing Gabor windows using convex optimization," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 266-287.
    18. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    19. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2016. "A block coordinate variable metric forward–backward algorithm," Journal of Global Optimization, Springer, vol. 66(3), pages 457-485, November.
    20. Doikov, Nikita & Nesterov, Yurii, 2021. "Optimization Methods for Fully Composite Problems," LIDAM Discussion Papers CORE 2021001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:76:y:2020:i:4:d:10.1007_s10898-019-00819-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.