IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v76y2020i3d10.1007_s10898-019-00784-z.html
   My bibliography  Save this article

Sparse solutions of optimal control via Newton method for under-determined systems

Author

Listed:
  • Boris Polyak

    (Institute for Control Sciences)

  • Andrey Tremba

    (Institute for Control Sciences)

Abstract

We focus on finding sparse and least-$$\ell _1$$ℓ1-norm solutions for unconstrained nonlinear optimal control problems. Such optimization problems are non-convex and non-smooth, nevertheless recent versions of Newton method for under-determined equations can be applied successively for such problems.

Suggested Citation

  • Boris Polyak & Andrey Tremba, 2020. "Sparse solutions of optimal control via Newton method for under-determined systems," Journal of Global Optimization, Springer, vol. 76(3), pages 613-623, March.
  • Handle: RePEc:spr:jglopt:v:76:y:2020:i:3:d:10.1007_s10898-019-00784-z
    DOI: 10.1007/s10898-019-00784-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00784-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00784-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii & POLYAK, B.T., 2006. "Cubic regularization of Newton method and its global performance," LIDAM Reprints CORE 1927, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. NESTEROV, Yurii, 2007. "Gauss-Newton scheme with worst case guarantees for global performance," LIDAM Reprints CORE 1952, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Doikov & Yurii Nesterov, 2021. "Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 317-339, April.
    2. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    3. Kenji Ueda & Nobuo Yamashita, 2010. "On a Global Complexity Bound of the Levenberg-Marquardt Method," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 443-453, December.
    4. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    5. Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    6. Seonho Park & Seung Hyun Jung & Panos M. Pardalos, 2020. "Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 953-971, March.
    7. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    8. Liaoyuan Zeng & Ting Kei Pong, 2022. "$$\rho$$ ρ -regularization subproblems: strong duality and an eigensolver-based algorithm," Computational Optimization and Applications, Springer, vol. 81(2), pages 337-368, March.
    9. Fedor Stonyakin & Ilya Kuruzov & Boris Polyak, 2023. "Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 531-551, August.
    10. Yuquan Chen & Yunkang Sun & Bing Wang, 2023. "Improving the Performance of Optimization Algorithms Using the Adaptive Fixed-Time Scheme and Reset Scheme," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    11. Yurii Nesterov, 2021. "Superfast Second-Order Methods for Unconstrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 1-30, October.
    12. Jaroslav Fowkes & Nicholas Gould & Chris Farmer, 2013. "A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions," Journal of Global Optimization, Springer, vol. 56(4), pages 1791-1815, August.
    13. Yakui Huang & Hongwei Liu, 2016. "Smoothing projected Barzilai–Borwein method for constrained non-Lipschitz optimization," Computational Optimization and Applications, Springer, vol. 65(3), pages 671-698, December.
    14. Nicholas I. M. Gould & Tyrone Rees & Jennifer A. Scott, 2019. "Convergence and evaluation-complexity analysis of a regularized tensor-Newton method for solving nonlinear least-squares problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 1-35, May.
    15. Nadav Hallak & Marc Teboulle, 2020. "Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 480-503, August.
    16. Francisco Facchinei & Vyacheslav Kungurtsev & Lorenzo Lampariello & Gesualdo Scutari, 2021. "Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 595-627, May.
    17. Rujun Jiang & Man-Chung Yue & Zhishuo Zhou, 2021. "An accelerated first-order method with complexity analysis for solving cubic regularization subproblems," Computational Optimization and Applications, Springer, vol. 79(2), pages 471-506, June.
    18. Tommaso Bianconcini & Giampaolo Liuzzi & Benedetta Morini & Marco Sciandrone, 2015. "On the use of iterative methods in cubic regularization for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 35-57, January.
    19. Sergey Guminov & Alexander Gasnikov & Ilya Kuruzov, 2023. "Accelerated methods for weakly-quasi-convex optimization problems," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    20. Giovanni Fasano & Raffaele Pesenti, 2017. "Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 764-794, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:76:y:2020:i:3:d:10.1007_s10898-019-00784-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.