IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v75y2019i1d10.1007_s10898-019-00754-5.html
   My bibliography  Save this article

Trajectory optimization using quantum computing

Author

Listed:
  • Alok Shukla

    (The University of Oklahoma)

  • Prakash Vedula

    (The University of Oklahoma)

Abstract

We present a framework wherein the trajectory optimization problem (or a problem involving calculus of variations) is formulated as a search problem in a discrete space. A distinctive feature of our work is the treatment of discretization of the optimization problem wherein we discretize not only independent variables (such as time) but also dependent variables. Our discretization scheme enables a reduction in computational cost through selection of coarse-grained states. It further facilitates the solution of the trajectory optimization problem via classical discrete search algorithms including deterministic and stochastic methods for obtaining a global optimum. This framework also allows us to efficiently use quantum computational algorithms for global trajectory optimization. We demonstrate that the discrete search problem can be solved by a variety of techniques including a deterministic exhaustive search in the physical space or the coefficient space, a randomized search algorithm, a quantum search algorithm or by employing a combination of randomized and quantum search algorithms depending on the nature of the problem. We illustrate our methods by solving some canonical problems in trajectory optimization. We also present a comparative study of the performances of different methods in solving our example problems. Finally, we make a case for using quantum search algorithms as they offer a quadratic speed-up in comparison to the traditional non-quantum algorithms.

Suggested Citation

  • Alok Shukla & Prakash Vedula, 2019. "Trajectory optimization using quantum computing," Journal of Global Optimization, Springer, vol. 75(1), pages 199-225, September.
  • Handle: RePEc:spr:jglopt:v:75:y:2019:i:1:d:10.1007_s10898-019-00754-5
    DOI: 10.1007/s10898-019-00754-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00754-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00754-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedro Lara & Renato Portugal & Carlile Lavor, 2014. "A new hybrid classical-quantum algorithm for continuous global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 317-331, October.
    2. Samuel H. Brooks, 1958. "A Discussion of Random Methods for Seeking Maxima," Operations Research, INFORMS, vol. 6(2), pages 244-251, April.
    3. D. Bulger & W. P. Baritompa & G. R. Wood, 2003. "Implementing Pure Adaptive Search with Grover's Quantum Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 517-529, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Peng & Donghua Wu & Wenxing Zhu, 2016. "The robust constant and its applications in random global search for unconstrained global optimization," Journal of Global Optimization, Springer, vol. 64(3), pages 469-482, March.
    2. D. W. Bulger, 2007. "Combining a Local Search and Grover’s Algorithm in Black-Box Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 289-301, June.
    3. D. Bulger & W. P. Baritompa & G. R. Wood, 2003. "Implementing Pure Adaptive Search with Grover's Quantum Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 517-529, March.
    4. Liu, Yipeng & Koehler, Gary J., 2010. "Using modifications to Grover's Search algorithm for quantum global optimization," European Journal of Operational Research, Elsevier, vol. 207(2), pages 620-632, December.
    5. Kyung-Yong Lee & Jung-Sung Park & Yun-Su Kim, 2021. "Optimal Placement of PMU to Enhance Supervised Learning-Based Pseudo-Measurement Modelling Accuracy in Distribution Network," Energies, MDPI, vol. 14(22), pages 1-18, November.
    6. Yipeng Liu & Gary Koehler, 2012. "A hybrid method for quantum global optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 607-626, March.
    7. David E. Kaufman & Robert L. Smith, 1998. "Direction Choice for Accelerated Convergence in Hit-and-Run Sampling," Operations Research, INFORMS, vol. 46(1), pages 84-95, February.
    8. G. R. Wood & D. W. Bulger & W. P. Baritompa & D. L. J. Alexander, 2006. "Backtracking Adaptive Search: Distribution of Number of Iterations to Convergence," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 547-562, March.
    9. Barkema, Alan Dean, 1985. "Farm survival under uncertainty," ISU General Staff Papers 1985010108000017535, Iowa State University, Department of Economics.
    10. E. A. Tsvetkov & R. A. Krymov, 2022. "Pure Random Search with Virtual Extension of Feasible Region," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 575-595, November.
    11. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    12. Boehlje, M. D. & Eisgruber, L. M., 1975. "A Decision Model For The Estate Management Problem," ISU General Staff Papers 197508010700001017, Iowa State University, Department of Economics.
    13. Rinnooy Kan, A. H. G. & Timmer, G. T., 1985. "Stochastic Global Optimization Methods Part I: Clustering Methods," Econometric Institute Archives 272329, Erasmus University Rotterdam.
    14. Taymaz, Erol, 1993. "A Calibration Algorithm for Micro-Simulation Models," Working Paper Series 374, Research Institute of Industrial Economics.
    15. Benjamin Lev, 2005. "Book Reviews," Interfaces, INFORMS, vol. 35(4), pages 339-345, August.
    16. Giulia Pedrielli & K. Selcuk Candan & Xilun Chen & Logan Mathesen & Alireza Inanalouganji & Jie Xu & Chun-Hung Chen & Loo Hay Lee, 2019. "Generalized Ordinal Learning Framework (GOLF) for Decision Making with Future Simulated Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-35, December.
    17. Coelho, Leandro dos Santos, 2008. "A quantum particle swarm optimizer with chaotic mutation operator," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1409-1418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:75:y:2019:i:1:d:10.1007_s10898-019-00754-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.