IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7767-d683149.html
   My bibliography  Save this article

Optimal Placement of PMU to Enhance Supervised Learning-Based Pseudo-Measurement Modelling Accuracy in Distribution Network

Author

Listed:
  • Kyung-Yong Lee

    (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology, Gwangju 61005, Korea)

  • Jung-Sung Park

    (KEPCO Research Institute, 105, Munji-Ro, Yuseong-Gu, Daejeon 34056, Korea)

  • Yun-Su Kim

    (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology, Gwangju 61005, Korea)

Abstract

This paper introduces a framework for optimal placement (OP) of phasor measurement units (PMUs) using metaheuristic algorithms in a distribution network. The voltage magnitude and phase angle obtained from PMUs were selected as the input variables for supervised learning-based pseudo-measurement modeling that outputs the voltage magnitude and phase angle of the unmeasured buses. For three, four, and five PMU installations, the metaheuristic algorithms explored 2000 combinations, corresponding to 40.32%, 5.56%, and 0.99% of all placement combinations in the 33-bus system and 3.99%, 0.25%, and 0.02% in the 69-bus system, respectively. Two metaheuristic algorithms, a genetic algorithm and particle swarm optimization, were applied; the results of the techniques were compared to random search and brute-force algorithms. Subsequently, the effects of pseudo-measurements based on optimal PMU placement were verified by state estimation. The state estimation results were compared among the pseudo-measurements generated by the optimal PMU placement, worst PMU placement, and load profile (LP). State estimation results based on OP were superior to those of LP-based pseudo-measurements. However, when pseudo-measurements based on the worst placement were used as state variables, the results were inferior to those obtained using the LP.

Suggested Citation

  • Kyung-Yong Lee & Jung-Sung Park & Yun-Su Kim, 2021. "Optimal Placement of PMU to Enhance Supervised Learning-Based Pseudo-Measurement Modelling Accuracy in Distribution Network," Energies, MDPI, vol. 14(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7767-:d:683149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samuel H. Brooks, 1958. "A Discussion of Random Methods for Seeking Maxima," Operations Research, INFORMS, vol. 6(2), pages 244-251, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos M. Manousakis, 2022. "Advanced Electrical Measurements Technologies," Energies, MDPI, vol. 15(9), pages 1-6, April.
    2. Sepideh Radhoush & Trevor Vannoy & Kaveen Liyanage & Bradley M. Whitaker & Hashem Nehrir, 2023. "Distribution System State Estimation and False Data Injection Attack Detection with a Multi-Output Deep Neural Network," Energies, MDPI, vol. 16(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Bulger & W. P. Baritompa & G. R. Wood, 2003. "Implementing Pure Adaptive Search with Grover's Quantum Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 517-529, March.
    2. David E. Kaufman & Robert L. Smith, 1998. "Direction Choice for Accelerated Convergence in Hit-and-Run Sampling," Operations Research, INFORMS, vol. 46(1), pages 84-95, February.
    3. Barkema, Alan Dean, 1985. "Farm survival under uncertainty," ISU General Staff Papers 1985010108000017535, Iowa State University, Department of Economics.
    4. E. A. Tsvetkov & R. A. Krymov, 2022. "Pure Random Search with Virtual Extension of Feasible Region," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 575-595, November.
    5. Boehlje, M. D. & Eisgruber, L. M., 1975. "A Decision Model For The Estate Management Problem," ISU General Staff Papers 197508010700001017, Iowa State University, Department of Economics.
    6. Rinnooy Kan, A. H. G. & Timmer, G. T., 1985. "Stochastic Global Optimization Methods Part I: Clustering Methods," Econometric Institute Archives 272329, Erasmus University Rotterdam.
    7. Zheng Peng & Donghua Wu & Wenxing Zhu, 2016. "The robust constant and its applications in random global search for unconstrained global optimization," Journal of Global Optimization, Springer, vol. 64(3), pages 469-482, March.
    8. Taymaz, Erol, 1993. "A Calibration Algorithm for Micro-Simulation Models," Working Paper Series 374, Research Institute of Industrial Economics.
    9. Alok Shukla & Prakash Vedula, 2019. "Trajectory optimization using quantum computing," Journal of Global Optimization, Springer, vol. 75(1), pages 199-225, September.
    10. Giulia Pedrielli & K. Selcuk Candan & Xilun Chen & Logan Mathesen & Alireza Inanalouganji & Jie Xu & Chun-Hung Chen & Loo Hay Lee, 2019. "Generalized Ordinal Learning Framework (GOLF) for Decision Making with Future Simulated Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-35, December.
    11. D. W. Bulger, 2007. "Combining a Local Search and Grover’s Algorithm in Black-Box Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 289-301, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7767-:d:683149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.