IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v74y2019i2d10.1007_s10898-019-00759-0.html
   My bibliography  Save this article

Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems

Author

Listed:
  • Zan Yang

    (Huazhong University of Science and Technology)

  • Haobo Qiu

    (Huazhong University of Science and Technology)

  • Liang Gao

    (Huazhong University of Science and Technology)

  • Chen Jiang

    (Huazhong University of Science and Technology)

  • Jinhao Zhang

    (Huazhong University of Science and Technology)

Abstract

Surrogate-assisted evolutionary algorithms (SAEAs) have recently shown excellent ability in solving computationally expensive optimization problems. However, with the increase of dimensions of research problems, the effectiveness of SAEAs for high-dimensional problems still needs to be improved further. In this paper, a two-layer adaptive surrogate-assisted evolutionary algorithm is proposed, in which three different search strategies are adaptively executed during the iteration according to the feedback information which is proposed to measure the status of the algorithm approaching the optimal value. In the proposed method, the global GP model is used to pre-screen the offspring produced by the DE/current-to-best/1 strategy for fast convergence speed, and the DE/current-to-randbest/1 strategy is proposed to guide the global GP model to locate promising regions when the feedback information reaches a presetting threshold. Moreover, a local search strategy (DE/best/1) is used to guide the local GP model which is built by using individuals closest to the current best individual to intensively exploit the promising regions. Furthermore, a dimension reduction technique is used to construct a reasonably accurate GP model for high-dimensional expensive problems. Empirical studies on benchmark problems with 50 and 100 variables demonstrate that the proposed algorithm is able to find high-quality solutions for high-dimensional problems under a limited computational budget.

Suggested Citation

  • Zan Yang & Haobo Qiu & Liang Gao & Chen Jiang & Jinhao Zhang, 2019. "Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems," Journal of Global Optimization, Springer, vol. 74(2), pages 327-359, June.
  • Handle: RePEc:spr:jglopt:v:74:y:2019:i:2:d:10.1007_s10898-019-00759-0
    DOI: 10.1007/s10898-019-00759-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00759-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00759-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felipe Viana & Raphael Haftka & Layne Watson, 2013. "Efficient global optimization algorithm assisted by multiple surrogate techniques," Journal of Global Optimization, Springer, vol. 56(2), pages 669-689, June.
    2. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    3. Rommel Regis & Christine Shoemaker, 2005. "Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions," Journal of Global Optimization, Springer, vol. 31(1), pages 153-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    2. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fani Boukouvala & M. M. Faruque Hasan & Christodoulos A. Floudas, 2017. "Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption," Journal of Global Optimization, Springer, vol. 67(1), pages 3-42, January.
    2. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    3. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    4. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    5. Charles Audet & Sébastien Le Digabel & Renaud Saltet, 2022. "Quantifying uncertainty with ensembles of surrogates for blackbox optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 29-66, September.
    6. Charles Audet & Michael Kokkolaras & Sébastien Le Digabel & Bastien Talgorn, 2018. "Order-based error for managing ensembles of surrogates in mesh adaptive direct search," Journal of Global Optimization, Springer, vol. 70(3), pages 645-675, March.
    7. Tipaluck Krityakierne & Taimoor Akhtar & Christine A. Shoemaker, 2016. "SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems," Journal of Global Optimization, Springer, vol. 66(3), pages 417-437, November.
    8. Juliane Müller & Marcus Day, 2019. "Surrogate Optimization of Computationally Expensive Black-Box Problems with Hidden Constraints," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 689-702, October.
    9. Juliane Müller, 2017. "SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 581-596, November.
    10. Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
    11. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    12. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
    13. Rommel G. Regis & Christine A. Shoemaker, 2009. "Parallel Stochastic Global Optimization Using Radial Basis Functions," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 411-426, August.
    14. Nicolau Andrés-Thió & Mario Andrés Muñoz & Kate Smith-Miles, 2022. "Bifidelity Surrogate Modelling: Showcasing the Need for New Test Instances," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3007-3022, November.
    15. Lehmann, Sebastian & Huth, Andreas, 2015. "Fast calibration of a dynamic vegetation model with minimum observation data," Ecological Modelling, Elsevier, vol. 301(C), pages 98-105.
    16. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    17. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    18. Driessen, L. & Brekelmans, R.C.M. & Gerichhausen, M. & Hamers, H.J.M. & den Hertog, D., 2006. "Why Methods for Optimization Problems with Time-Consuming Function Evaluations and Integer Variables Should Use Global Approximation Models," Other publications TiSEM 45a73d28-9fed-4b4c-a909-1, Tilburg University, School of Economics and Management.
    19. Alberto Bemporad, 2020. "Global optimization via inverse distance weighting and radial basis functions," Computational Optimization and Applications, Springer, vol. 77(2), pages 571-595, November.
    20. Juliane Müller & Robert Piché, 2011. "Mixture surrogate models based on Dempster-Shafer theory for global optimization problems," Journal of Global Optimization, Springer, vol. 51(1), pages 79-104, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:74:y:2019:i:2:d:10.1007_s10898-019-00759-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.