IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v70y2018i3d10.1007_s10898-017-0574-1.html
   My bibliography  Save this article

Order-based error for managing ensembles of surrogates in mesh adaptive direct search

Author

Listed:
  • Charles Audet

    (École Polytechnique de Montréal)

  • Michael Kokkolaras

    (McGill University)

  • Sébastien Le Digabel

    (École Polytechnique de Montréal)

  • Bastien Talgorn

    (McGill University)

Abstract

We investigate surrogate-assisted strategies for global derivative-free optimization using the mesh adaptive direct search (MADS) blackbox optimization algorithm. In particular, we build an ensemble of surrogate models to be used within the search step of MADS to perform global exploration, and examine different methods for selecting the best model for a given problem at hand. To do so, we introduce an order-based error tailored to surrogate-based search. We report computational experiments for ten analytical benchmark problems and three engineering design applications. Results demonstrate that different metrics may result in different model choices and that the use of order-based metrics improves performance.

Suggested Citation

  • Charles Audet & Michael Kokkolaras & Sébastien Le Digabel & Bastien Talgorn, 2018. "Order-based error for managing ensembles of surrogates in mesh adaptive direct search," Journal of Global Optimization, Springer, vol. 70(3), pages 645-675, March.
  • Handle: RePEc:spr:jglopt:v:70:y:2018:i:3:d:10.1007_s10898-017-0574-1
    DOI: 10.1007/s10898-017-0574-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0574-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0574-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felipe Viana & Raphael Haftka & Layne Watson, 2013. "Efficient global optimization algorithm assisted by multiple surrogate techniques," Journal of Global Optimization, Springer, vol. 56(2), pages 669-689, June.
    2. B. Curtis Eaves, 1971. "On Quadratic Programming," Management Science, INFORMS, vol. 17(11), pages 698-711, July.
    3. H. Le Thi & A. Vaz & L. Vicente, 2012. "Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 190-214, April.
    4. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    5. Taddy, Matthew A. & Gramacy, Robert B. & Polson, Nicholas G., 2011. "Dynamic Trees for Learning and Design," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 109-123.
    6. A. Custódio & H. Rocha & L. Vicente, 2010. "Incorporating minimum Frobenius norm models in direct search," Computational Optimization and Applications, Springer, vol. 46(2), pages 265-278, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles Audet & Sébastien Le Digabel & Renaud Saltet, 2022. "Quantifying uncertainty with ensembles of surrogates for blackbox optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 29-66, September.
    2. Charles Audet & Christophe Tribes, 2018. "Mesh-based Nelder–Mead algorithm for inequality constrained optimization," Computational Optimization and Applications, Springer, vol. 71(2), pages 331-352, November.
    3. Charles Audet & Jean Bigeon & Romain Couderc, 2021. "Combining Cross-Entropy and MADS Methods for Inequality Constrained Global Optimization," SN Operations Research Forum, Springer, vol. 2(3), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Audet & Sébastien Le Digabel & Renaud Saltet, 2022. "Quantifying uncertainty with ensembles of surrogates for blackbox optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 29-66, September.
    2. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    3. Zan Yang & Haobo Qiu & Liang Gao & Chen Jiang & Jinhao Zhang, 2019. "Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems," Journal of Global Optimization, Springer, vol. 74(2), pages 327-359, June.
    4. Tipaluck Krityakierne & Taimoor Akhtar & Christine A. Shoemaker, 2016. "SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems," Journal of Global Optimization, Springer, vol. 66(3), pages 417-437, November.
    5. Fani Boukouvala & M. M. Faruque Hasan & Christodoulos A. Floudas, 2017. "Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption," Journal of Global Optimization, Springer, vol. 67(1), pages 3-42, January.
    6. Juliane Müller, 2017. "SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 581-596, November.
    7. Musshoff, Oliver & Hirschauer, Norbert, 2004. "Optimierung unter Unsicherheit mit Hilfe stochastischer Simulation und Genetischer Algorithmen – dargestellt anhand der Optimierung des Produktionsprogramms eines Brandenburger Marktfruchtbetriebes," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 53(07), pages 1-16.
    8. Erasmus, Barend & van Jaarsveld, Albert & van Zyl, Johan & Vink, Nick, 2000. "The effects of climate change on the farm sector in the Western Cape," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 39(4), pages 1-15, December.
    9. Luo, Z-Q. & Zhang, S., 1997. "On the extensions of the Frank-Worfe theorem," Econometric Institute Research Papers EI 9748/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038)," Other publications TiSEM 4915047b-afe4-4fc7-8a1c-4, Tilburg University, School of Economics and Management.
    11. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    12. Paudel, K. P. & Lohr, L. & Martin, N. R., 2000. "Effect of risk perspective on fertilizer choice by sharecroppers," Agricultural Systems, Elsevier, vol. 66(2), pages 115-128, November.
    13. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    14. Just, Richard E., 2000. "Some Guiding Principles for Empirical Production Research in Agriculture," Agricultural and Resource Economics Review, Cambridge University Press, vol. 29(2), pages 138-158, October.
    15. Norton, George W., 1976. "Constraints To Increasing Livestock Production In Less Developed Countries: A Literature Review," Staff Papers 14043, University of Minnesota, Department of Applied Economics.
    16. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
    17. Adams, Richard M. & Menkhaus, Dale J. & Woolery, Bruce A., 1980. "Alternative Parameter Specification In E, V Analysis: Implications For Farm Level Decision Making," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 5(1), pages 1-8, July.
    18. Anderson, Jock R., 1975. "Programming For Efficient Planning Against Non-Normal Risk," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 19(2), pages 1-14, August.
    19. Nicolau Andrés-Thió & Mario Andrés Muñoz & Kate Smith-Miles, 2022. "Bifidelity Surrogate Modelling: Showcasing the Need for New Test Instances," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3007-3022, November.
    20. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:70:y:2018:i:3:d:10.1007_s10898-017-0574-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.