IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v31y2005i1p153-171.html
   My bibliography  Save this article

Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions

Author

Listed:
  • Rommel Regis
  • Christine Shoemaker

Abstract

We present a new strategy for the constrained global optimization of expensive black box functions using response surface models. A response surface model is simply a multivariate approximation of a continuous black box function which is used as a surrogate model for optimization in situations where function evaluations are computationally expensive. Prior global optimization methods that utilize response surface models were limited to box-constrained problems, but the new method can easily incorporate general nonlinear constraints. In the proposed method, which we refer to as the Constrained Optimization using Response Surfaces (CORS) Method, the next point for costly function evaluation is chosen to be the one that minimizes the current response surface model subject to the given constraints and to additional constraints that the point be of some distance from previously evaluated points. The distance requirement is allowed to cycle, starting from a high value (global search) and ending with a low value (local search). The purpose of the constraint is to drive the method towards unexplored regions of the domain and to prevent the premature convergence of the method to some point which may not even be a local minimizer of the black box function. The new method can be shown to converge to the global minimizer of any continuous function on a compact set regardless of the response surface model that is used. Finally, we considered two particular implementations of the CORS method which utilize a radial basis function model (CORS-RBF) and applied it on the box-constrained Dixon–Szegö test functions and on a simple nonlinearly constrained test function. The results indicate that the CORS-RBF algorithms are competitive with existing global optimization algorithms for costly functions on the box-constrained test problems. The results also show that the CORS-RBF algorithms are better than other algorithms for constrained global optimization on the nonlinearly constrained test problem. Copyright Springer Science+Business Media New York 2005

Suggested Citation

  • Rommel Regis & Christine Shoemaker, 2005. "Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions," Journal of Global Optimization, Springer, vol. 31(1), pages 153-171, January.
  • Handle: RePEc:spr:jglopt:v:31:y:2005:i:1:p:153-171
    DOI: 10.1007/s10898-004-0570-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-004-0570-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-004-0570-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:31:y:2005:i:1:p:153-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.