IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v70y2018i4d10.1007_s10898-017-0592-z.html
   My bibliography  Save this article

Tensor maximal correlation problems

Author

Listed:
  • Anwa Zhou

    (Shanghai University)

  • Xin Zhao

    (Shanghai Jiao Tong University)

  • Jinyan Fan

    (Shanghai Jiao Tong University)

  • Yanqin Bai

    (Shanghai University)

Abstract

This paper studies the tensor maximal correlation problem, which aims at optimizing correlations between sets of variables in many statistical applications. We reformulate the problem as an equivalent polynomial optimization problem, by adding the first order optimality condition to the constraints, then construct a hierarchy of semidefinite relaxations for solving it. The global maximizers of the problem can be detected by solving a finite number of such semidefinite relaxations. Numerical experiments show the efficiency of the proposed method.

Suggested Citation

  • Anwa Zhou & Xin Zhao & Jinyan Fan & Yanqin Bai, 2018. "Tensor maximal correlation problems," Journal of Global Optimization, Springer, vol. 70(4), pages 843-858, April.
  • Handle: RePEc:spr:jglopt:v:70:y:2018:i:4:d:10.1007_s10898-017-0592-z
    DOI: 10.1007/s10898-017-0592-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0592-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0592-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Geer, 1984. "Linear relations amongk sets of variables," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 79-94, March.
    2. Lei-Hong Zhang & Li-Zhi Liao & Li-Ming Sun, 2011. "Towards the global solution of the maximal correlation problem," Journal of Global Optimization, Springer, vol. 49(1), pages 91-107, January.
    3. Lei-Hong Zhang & Li-Zhi Liao, 2012. "An alternating variable method for the maximal correlation problem," Journal of Global Optimization, Springer, vol. 54(1), pages 199-218, September.
    4. Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.
    5. Mohamed Hanafi & Jos Berge, 2003. "Global optimality of the successive Maxbet algorithm," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 97-103, March.
    6. Paul Horst, 1961. "Relations amongm sets of measures," Psychometrika, Springer;The Psychometric Society, vol. 26(2), pages 129-149, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vartan Choulakian, 2011. "Picture of all Solutions of Successive 2-Block Maxbet Problems," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 550-563, October.
    2. Lei-Hong Zhang & Li-Zhi Liao & Li-Ming Sun, 2011. "Towards the global solution of the maximal correlation problem," Journal of Global Optimization, Springer, vol. 49(1), pages 91-107, January.
    3. Lei-Hong Zhang & Li-Zhi Liao, 2012. "An alternating variable method for the maximal correlation problem," Journal of Global Optimization, Springer, vol. 54(1), pages 199-218, September.
    4. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2021. "Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 409-427, August.
    5. Lafosse, Roger & ten Berge, Jos M.F., 2006. "A simultaneous CONCOR algorithm for the analysis of two partitioned matrices," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2529-2535, June.
    6. Hanafi, Mohamed & Kiers, Henk A.L., 2006. "Analysis of K sets of data, with differential emphasis on agreement between and within sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1491-1508, December.
    7. Tenenhaus, Arthur & Philippe, Cathy & Frouin, Vincent, 2015. "Kernel Generalized Canonical Correlation Analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 114-131.
    8. Michel Tenenhaus & Arthur Tenenhaus & Patrick J. F. Groenen, 2017. "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 737-777, September.
    9. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2019. "Customer satisfaction evaluation by common component and specific weight analysis using a mixed coding system," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2491-2505, September.
    10. Casin, Ph., 2001. "A generalization of principal component analysis to K sets of variables," Computational Statistics & Data Analysis, Elsevier, vol. 35(4), pages 417-428, February.
    11. Tenenhaus, Arthur & Tenenhaus, Michel, 2014. "Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis," European Journal of Operational Research, Elsevier, vol. 238(2), pages 391-403.
    12. Samir Adly & Hadia Rammal, 2013. "A new method for solving Pareto eigenvalue complementarity problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 703-731, July.
    13. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    14. Laurent, Monique & Vargas, Luis Felipe, 2022. "Finite convergence of sum-of-squares hierarchies for the stability number of a graph," Other publications TiSEM 3998b864-7504-4cf4-bc1d-f, Tilburg University, School of Economics and Management.
    15. Laurent, M. & Rostalski, P., 2012. "The approach of moments for polynomial equations," Other publications TiSEM f08f3cd2-b83e-4bf1-9322-a, Tilburg University, School of Economics and Management.
    16. Tomohiko Mizutani & Makoto Yamashita, 2013. "Correlative sparsity structures and semidefinite relaxations for concave cost transportation problems with change of variables," Journal of Global Optimization, Springer, vol. 56(3), pages 1073-1100, July.
    17. Fook Wai Kong & Polyxeni-Margarita Kleniati & Berç Rustem, 2012. "Computation of Correlated Equilibrium with Global-Optimal Expected Social Welfare," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 237-261, April.
    18. Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
    19. Walter Kristof, 1967. "Orthogonal inter-battery factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 32(2), pages 199-227, June.
    20. Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:70:y:2018:i:4:d:10.1007_s10898-017-0592-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.