IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v53y2019i5d10.1007_s11135-018-0770-1.html
   My bibliography  Save this article

Customer satisfaction evaluation by common component and specific weight analysis using a mixed coding system

Author

Listed:
  • Pietro Amenta

    (University of Sannio)

  • Antonio Lucadamo

    (University of Sannio)

  • Antonello D’Ambra

    (University of Campania “Luigi Vanvitelli”)

Abstract

The Servqual model (Parasuraman et al. in J Mark 49(4):41–50, 1985; J Retail 64:12–40, 1988) involves a set of five dimensions ranked as the most important for service quality: tangibility, reliability, responsiveness, assurance and empathy. The researchers developed then a survey instrument to measure the gaps between customers’ expectations and perceptions of service. A re-examination and extension of this model, named Servperf, investigates instead only the perceptions of the service (Cronin and Taylor in J Mark 56(3):55–68, 1992; J Mark 58:125–31, 1994). Common components and specific weights analysis (Qannari et al. in Food Qual Prefer 11: 151–154, 2000) is here proposed to analyze customer perceptions. The rationale behind this method is the existence of a common structure to the data tables. Therefore, it determines a common space of representation for all data. Each table, which represents a Servqual dimension, is allowed having a specific weight associated with each dimension of the common space. We investigate then the customer satisfaction with respect to a common reference system where all the dimensions contribute to forming it. The analysis is performed transforming preliminarily the values of the categorical variables according to two different coding systems.

Suggested Citation

  • Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2019. "Customer satisfaction evaluation by common component and specific weight analysis using a mixed coding system," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2491-2505, September.
  • Handle: RePEc:spr:qualqt:v:53:y:2019:i:5:d:10.1007_s11135-018-0770-1
    DOI: 10.1007/s11135-018-0770-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-018-0770-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-018-0770-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Geer, 1984. "Linear relations amongk sets of variables," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 79-94, March.
    2. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    3. Yoshio Takane & Tadashi Shibayama, 1991. "Principal component analysis with external information on both subjects and variables," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 97-120, March.
    4. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    5. Lavit, Christine & Escoufier, Yves & Sabatier, Robert & Traissac, Pierre, 1994. "The ACT (STATIS method)," Computational Statistics & Data Analysis, Elsevier, vol. 18(1), pages 97-119, August.
    6. Paul Horst, 1961. "Relations amongm sets of measures," Psychometrika, Springer;The Psychometric Society, vol. 26(2), pages 129-149, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2021. "Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 409-427, August.
    2. Kunert, Joachim & Qannari, El Mostafa, 1998. "A simple alternative to Generalized Procrustes Analysis: Application to sensory profiling data," Technical Reports 1998,32, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Casin, Ph., 2001. "A generalization of principal component analysis to K sets of variables," Computational Statistics & Data Analysis, Elsevier, vol. 35(4), pages 417-428, February.
    4. Tenenhaus, Arthur & Tenenhaus, Michel, 2014. "Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis," European Journal of Operational Research, Elsevier, vol. 238(2), pages 391-403.
    5. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    6. Hanafi, Mohamed & Kiers, Henk A.L., 2006. "Analysis of K sets of data, with differential emphasis on agreement between and within sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1491-1508, December.
    7. Lei-Hong Zhang & Li-Zhi Liao & Li-Ming Sun, 2011. "Towards the global solution of the maximal correlation problem," Journal of Global Optimization, Springer, vol. 49(1), pages 91-107, January.
    8. Herbert Marsh & Robert Boik, 1993. "Reviews," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 145-152, March.
    9. Tenenhaus, Arthur & Philippe, Cathy & Frouin, Vincent, 2015. "Kernel Generalized Canonical Correlation Analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 114-131.
    10. Lei-Hong Zhang & Li-Zhi Liao, 2012. "An alternating variable method for the maximal correlation problem," Journal of Global Optimization, Springer, vol. 54(1), pages 199-218, September.
    11. Michael Windham & J. Hutchinson & Shizuhiko Nishisato & Ludovic Lebart & George Furnas & Richard Dubes & Frank Critchley & A. Gordon & Fionn Murtagh & Ulf Bockenholt & Philip Hopke & Daniel Wartenberg, 1988. "Book reviews," Journal of Classification, Springer;The Classification Society, vol. 5(1), pages 105-154, March.
    12. Michel Tenenhaus & Arthur Tenenhaus & Patrick J. F. Groenen, 2017. "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 737-777, September.
    13. Vartan Choulakian, 2011. "Picture of all Solutions of Successive 2-Block Maxbet Problems," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 550-563, October.
    14. Albert Maydeu-Olivares & Ishwar Sethi & Phipps Arabie & A. Tanguiane & K. Klauer & Pierre Hansen & Klaas Sijtsma & M. Windham, 1995. "Book reviews," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 137-158, March.
    15. Jacques Bénasséni & Mohammed Bennani Dosse, 2012. "Analyzing multiset data by the Power STATIS-ACT method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 49-65, April.
    16. Vivien, Myrtille & Sabatier, Robert, 2004. "A generalization of STATIS-ACT strategy: DO-ACT for two multiblocks tables," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 155-171, May.
    17. Anwa Zhou & Xin Zhao & Jinyan Fan & Yanqin Bai, 2018. "Tensor maximal correlation problems," Journal of Global Optimization, Springer, vol. 70(4), pages 843-858, April.
    18. Husson, F. & Pages, J., 2006. "INDSCAL model: geometrical interpretation and methodology," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 358-378, January.
    19. Carmen C. Rodríguez-Martínez & Mitzi Cubilla-Montilla & Purificación Vicente-Galindo & Purificación Galindo-Villardón, 2021. "Sparse STATIS-Dual via Elastic Net," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    20. S. Hess & E. Suárez & J. Camacho & G. Ramírez & B. Hernández, 2001. "Reliability of Coordinates Obtained by MINISSA Concerning the Order of Presented Stimuli," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(2), pages 117-128, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:53:y:2019:i:5:d:10.1007_s11135-018-0770-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.