IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p1007-d373615.html
   My bibliography  Save this article

A New Machine Learning Algorithm Based on Optimization Method for Regression and Classification Problems

Author

Listed:
  • Warunun Inthakon

    (Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Suthep Suantai

    (Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Panitarn Sarnmeta

    (Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Dawan Chumpungam

    (Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

Abstract

A convex minimization problem in the form of the sum of two proper lower-semicontinuous convex functions has received much attention from the community of optimization due to its broad applications to many disciplines, such as machine learning, regression and classification problems, image and signal processing, compressed sensing and optimal control. Many methods have been proposed to solve such problems but most of them take advantage of Lipschitz continuous assumption on the derivative of one function from the sum of them. In this work, we introduce a new accelerated algorithm for solving the mentioned convex minimization problem by using a linesearch technique together with a viscosity inertial forward–backward algorithm (VIFBA). A strong convergence result of the proposed method is obtained under some control conditions. As applications, we apply our proposed method to solve regression and classification problems by using an extreme learning machine model. Moreover, we show that our proposed algorithm has more efficiency and better convergence behavior than some algorithms mentioned in the literature.

Suggested Citation

  • Warunun Inthakon & Suthep Suantai & Panitarn Sarnmeta & Dawan Chumpungam, 2020. "A New Machine Learning Algorithm Based on Optimization Method for Regression and Classification Problems," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1007-:d:373615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/1007/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/1007/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Regina S. Burachik & Alfredo N. Iusem, 2008. "Set-Valued Mappings and Enlargements of Monotone Operators," Springer Optimization and Its Applications, Springer, number 978-0-387-69757-4, June.
    2. Regina S. Burachik & Alfredo N. Iusem, 2008. "Enlargements of Monotone Operators," Springer Optimization and Its Applications, in: Set-Valued Mappings and Enlargements of Monotone Operators, chapter 0, pages 161-220, Springer.
    3. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunier Bello-Cruz & Guoyin Li & Tran T. A. Nghia, 2021. "On the Linear Convergence of Forward–Backward Splitting Method: Part I—Convergence Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 378-401, February.
    2. Huynh Van Ngai & Nguyen Huu Tron & Michel Théra, 2014. "Metric Regularity of the Sum of Multifunctions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 355-390, February.
    3. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2021. "A New Forward–Backward Algorithm with Line Searchand Inertial Techniques for Convex Minimization Problems with Applications," Mathematics, MDPI, vol. 9(13), pages 1-20, July.
    4. Walaa M. Moursi & Lieven Vandenberghe, 2019. "Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 179-198, October.
    5. Sedi Bartz & Minh N. Dao & Hung M. Phan, 2022. "Conical averagedness and convergence analysis of fixed point algorithms," Journal of Global Optimization, Springer, vol. 82(2), pages 351-373, February.
    6. Bello Cruz, J.Y. & Iusem, A.N., 2015. "Full convergence of an approximate projection method for nonsmooth variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 114(C), pages 2-13.
    7. Rubén López, 2013. "Variational convergence for vector-valued functions and its applications to convex multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 1-34, August.
    8. Regina S. Burachik & Minh N. Dao & Scott B. Lindstrom, 2021. "Generalized Bregman Envelopes and Proximity Operators," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 744-778, September.
    9. Jonathan M. Borwein & Liangjin Yao, 2013. "Structure Theory for Maximally Monotone Operators with Points of Continuity," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 1-24, April.
    10. Ludovic Nagesseur, 2016. "A bundle method using two polyhedral approximations of the $$\varepsilon $$ ε -enlargement of a maximal monotone operator," Computational Optimization and Applications, Springer, vol. 64(1), pages 75-100, May.
    11. Juan Pablo Luna & Claudia Sagastizábal & Mikhail Solodov, 2020. "A class of Benders decomposition methods for variational inequalities," Computational Optimization and Applications, Springer, vol. 76(3), pages 935-959, July.
    12. Edvaldo E. A. Batista & Glaydston de Carvalho Bento & Orizon P. Ferreira, 2016. "Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 916-931, September.
    13. J. Y. Bello Cruz & R. Díaz Millán, 2016. "A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces," Journal of Global Optimization, Springer, vol. 65(3), pages 597-614, July.
    14. Heinz H. Bauschke & Warren L. Hare & Walaa M. Moursi, 2016. "On the Range of the Douglas–Rachford Operator," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 884-897, August.
    15. Regina S. Burachik & C. Yalçın Kaya & Shoham Sabach, 2012. "A Generalized Univariate Newton Method Motivated by Proximal Regularization," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 923-940, December.
    16. Hsien-Chung Wu, 2018. "Near Fixed Point Theorems in Hyperspaces," Mathematics, MDPI, vol. 6(6), pages 1-15, May.
    17. Walaa M. Moursi, 2018. "The Forward–Backward Algorithm and the Normal Problem," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 605-624, March.
    18. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    19. Hsien-Chung Wu, 2019. "Informal Norm in Hyperspace and Its Topological Structure," Mathematics, MDPI, vol. 7(10), pages 1-20, October.
    20. Phan Vuong & Jean Strodiot & Van Nguyen, 2014. "Projected viscosity subgradient methods for variational inequalities with equilibrium problem constraints in Hilbert spaces," Journal of Global Optimization, Springer, vol. 59(1), pages 173-190, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1007-:d:373615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.