IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v57y2013i2p367-384.html
   My bibliography  Save this article

Utilizing expected improvement and generalized data envelopment analysis in multi-objective genetic algorithms

Author

Listed:
  • Yeboon Yun
  • Hirotaka Nakayama

Abstract

Meta-heuristic methods such as genetic algorithms (GA) and particle swarm optimization (PSO) have been extended to multi-objective optimization problems, and have been observed to be useful for finding good approximate Pareto optimal solutions. In order to improve the convergence and the diversity in the search of solutions using meta-heuristic methods, this paper suggests a new method to make offspring by utilizing the expected improvement (EI) and generalized data envelopment analysis (GDEA). In addition, the effectiveness of the proposed method will be investigated through several numerical examples in comparison with the conventional multi-objective GA and PSO methods. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Yeboon Yun & Hirotaka Nakayama, 2013. "Utilizing expected improvement and generalized data envelopment analysis in multi-objective genetic algorithms," Journal of Global Optimization, Springer, vol. 57(2), pages 367-384, October.
  • Handle: RePEc:spr:jglopt:v:57:y:2013:i:2:p:367-384
    DOI: 10.1007/s10898-013-0038-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0038-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0038-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Yun, Y. B. & Nakayama, H. & Tanino, T. & Arakawa, M., 2001. "Generation of efficient frontiers in multi-objective optimization problems by generalized data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 129(3), pages 586-595, March.
    3. Yun, Y. B. & Nakayama, H. & Tanino, T., 2004. "A generalized model for data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 157(1), pages 87-105, August.
    4. Yun, Y. B. & Nakayama, H. & Arakawa, M., 2004. "Multiple criteria decision making with generalized DEA and an aspiration level method," European Journal of Operational Research, Elsevier, vol. 158(3), pages 697-706, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kourosh Ranjbar & Hamid Khaloozadeh & Aghileh Heydari, 2020. "A novel mixed Spider’s web initial solution and data envelopment analysis for solving multi-objective optimization problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 193-208, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeboon Yun & Hirotaka Nakayama & Min Yoon, 2016. "Generation of Pareto optimal solutions using generalized DEA and PSO," Journal of Global Optimization, Springer, vol. 64(1), pages 49-61, January.
    2. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
    3. Kourosh Ranjbar & Hamid Khaloozadeh & Aghileh Heydari, 2020. "A novel mixed Spider’s web initial solution and data envelopment analysis for solving multi-objective optimization problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 193-208, March.
    4. Mushtaq Taleb & Ruzelan Khalid & Ali Emrouznejad & Razamin Ramli, 2023. "Environmental efficiency under weak disposability: an improved super efficiency data envelopment analysis model with application for assessment of port operations considering NetZero," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6627-6656, July.
    5. Whittaker, Gerald & Confesor Jr., Remegio & Griffith, Stephen M. & Färe, Rolf & Grosskopf, Shawna & Steiner, Jeffrey J. & Mueller-Warrant, George W. & Banowetz, Gary M., 2009. "A hybrid genetic algorithm for multiobjective problems with activity analysis-based local search," European Journal of Operational Research, Elsevier, vol. 193(1), pages 195-203, February.
    6. Sophia Moralishvili & Khatia Shevardnadze & Rusudan Tkeshelashvili, 2019. "Towards Critical Thinking and Its Perception in Georgia (Tbilisi Open Teaching University Case)," European Journal of Multidisciplinary Studies Articles, Revistia Research and Publishing, vol. 4, May - Aug.
    7. Kleine, A., 2004. "A general model framework for DEA," Omega, Elsevier, vol. 32(1), pages 17-23, February.
    8. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    9. repec:lan:wpaper:1115 is not listed on IDEAS
    10. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    11. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    12. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    13. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    14. Bowlin, W. F., 1995. "A characterization of the financial condition of the United States' aerospace-defense industrial base," Omega, Elsevier, vol. 23(5), pages 539-555, October.
    15. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    16. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    17. Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
    18. Khanal, Aditya & Koirala, Krishna & Regmi, Madhav, 2016. "Do Financial Constraints Affect Production Efficiency in Drought Prone Areas? A Case from Indonesian Rice Growers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230087, Southern Agricultural Economics Association.
    19. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    20. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    21. Bogetoft, Peter & Nielsen, Kurt, 2003. "Yardstick Based Procurement Design In Natural Resource Management," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25910, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:2:p:367-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.