IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v54y2012i3p449-483.html
   My bibliography  Save this article

Registrar: a complete-memory operator to enhance performance of genetic algorithms

Author

Listed:
  • Aristotelis Charalampakis

Abstract

We examine the concept of storing all evaluated chromosomes and directly reuse them in Genetic Algorithms (GAs). This is achieved by a fully encapsulated operator, called Registrar, which is effortlessly placed between the GA and the objective function. The Registrar does not approximate the objective function. Instead, it replaces the chromosomes requested by the GA with similar ones taken from the registry, bypassing the function evaluation. Unlike other methods that use external memory to increase genetic diversity, our simple implementation encourages revisits in order to avoid evaluations in an aggressive manner. Significant increase in performance is observed which is present even at the early stages of evolution, in accordance with the Birthday Problem of probability theory. Implementation with Standard GA shows great promise, while the encapsulation of the code facilitates implementation with other Evolutionary Algorithms. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • Aristotelis Charalampakis, 2012. "Registrar: a complete-memory operator to enhance performance of genetic algorithms," Journal of Global Optimization, Springer, vol. 54(3), pages 449-483, November.
  • Handle: RePEc:spr:jglopt:v:54:y:2012:i:3:p:449-483
    DOI: 10.1007/s10898-011-9770-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9770-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9770-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rommel Regis & Christine Shoemaker, 2005. "Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions," Journal of Global Optimization, Springer, vol. 31(1), pages 153-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Chen & Hendri Daleanu & Chi-Huey Wong* & J.C.-Y. Chen, 2019. "Mathematical Derives of Evolutionary Algorithms for Multiple Criteria Decision Making," Sumerianz Journal of Scientific Research, Sumerianz Publication, vol. 2(1), pages 5-11, 01-2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    2. Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
    3. Juliane Müller & Christine Shoemaker & Robert Piché, 2014. "SO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications," Journal of Global Optimization, Springer, vol. 59(4), pages 865-889, August.
    4. H. Le Thi & A. Vaz & L. Vicente, 2012. "Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 190-214, April.
    5. Saleem Ramadan, 2016. "A Hybrid Global Optimization Method Based on Genetic Algorithm and Shrinking Box," Modern Applied Science, Canadian Center of Science and Education, vol. 10(2), pages 1-67, February.
    6. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    7. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    8. Rommel G. Regis & Christine A. Shoemaker, 2009. "Parallel Stochastic Global Optimization Using Radial Basis Functions," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 411-426, August.
    9. Lehmann, Sebastian & Huth, Andreas, 2015. "Fast calibration of a dynamic vegetation model with minimum observation data," Ecological Modelling, Elsevier, vol. 301(C), pages 98-105.
    10. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    11. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    12. Driessen, L. & Brekelmans, R.C.M. & Gerichhausen, M. & Hamers, H.J.M. & den Hertog, D., 2006. "Why Methods for Optimization Problems with Time-Consuming Function Evaluations and Integer Variables Should Use Global Approximation Models," Other publications TiSEM 45a73d28-9fed-4b4c-a909-1, Tilburg University, School of Economics and Management.
    13. Alberto Bemporad, 2020. "Global optimization via inverse distance weighting and radial basis functions," Computational Optimization and Applications, Springer, vol. 77(2), pages 571-595, November.
    14. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    15. Juliane Müller & Robert Piché, 2011. "Mixture surrogate models based on Dempster-Shafer theory for global optimization problems," Journal of Global Optimization, Springer, vol. 51(1), pages 79-104, September.
    16. C. J. Price & M. Reale & B. L. Robertson, 2021. "Oscars-ii: an algorithm for bound constrained global optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 39-57, January.
    17. Zan Yang & Haobo Qiu & Liang Gao & Chen Jiang & Jinhao Zhang, 2019. "Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems," Journal of Global Optimization, Springer, vol. 74(2), pages 327-359, June.
    18. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    19. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Pumping Optimization of Coastal Aquifers Assisted by Adaptive Metamodelling Methods and Radial Basis Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5845-5859, December.
    20. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:3:p:449-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.