IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v56y2013i4p1617-1629.html
   My bibliography  Save this article

Hadamard well-posedness of a general mixed variational inequality in Banach space

Author

Listed:
  • Xiao-bo Li
  • Fu-quan Xia

Abstract

In this paper, we first introduce the concept of Hadamard well-posedness of a general mixed variational inequality in Banach space. Under some suitable conditions, relations between Levitin–Polyak well-posedness and Hadamard well-posedness of a general mixed variational inequality are studied. We also establish some characterizations of Hadamard well-posedness for a genaral mixed variational inequality. Finally, we derive some conditions under which a general mixed variational inequality is Hadamard well-posed. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Xiao-bo Li & Fu-quan Xia, 2013. "Hadamard well-posedness of a general mixed variational inequality in Banach space," Journal of Global Optimization, Springer, vol. 56(4), pages 1617-1629, August.
  • Handle: RePEc:spr:jglopt:v:56:y:2013:i:4:p:1617-1629
    DOI: 10.1007/s10898-012-9916-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9916-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9916-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. M. Yang & X. Q. Yang & K. L. Teo, 2004. "Some Remarks on the Minty Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 193-201, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "Increase-along-rays property for vector functions," Economics and Quantitative Methods qf04015, Department of Economics, University of Insubria.
    2. Ya-Ping Fang & Rong Hu, 2007. "Estimates of approximate solutions and well-posedness for variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 281-291, April.
    3. Li, X.B. & Li, S.J., 2014. "Hölder continuity of perturbed solution set for convex optimization problems," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 908-918.
    4. S. Al-Homidan & Q. H. Ansari, 2010. "Generalized Minty Vector Variational-Like Inequalities and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 1-11, January.
    5. Syed Shakaib Irfan & Mijanur Rahaman & Iqbal Ahmad & Rais Ahmad & Saddam Husain, 2019. "Generalized Nonsmooth Exponential-Type Vector Variational-Like Inequalities and Nonsmooth Vector Optimization Problems in Asplund Spaces," Mathematics, MDPI, vol. 7(4), pages 1-11, April.
    6. Ren-you Zhong & Nan-jing Huang, 2010. "Stability Analysis for Minty Mixed Variational Inequality in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 454-472, December.
    7. Giovanni P. Crespi & Matteo Rocca & Carola Schrage, 2015. "Variational Inequalities Characterizing Weak Minimality in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 804-824, September.
    8. Qamrul Ansari & Mahboubeh Rezaie & Jafar Zafarani, 2012. "Generalized vector variational-like inequalities and vector optimization," Journal of Global Optimization, Springer, vol. 53(2), pages 271-284, June.
    9. Yong Zhao & Jin Zhang & Xinmin Yang & Gui-Hua Lin, 2017. "Expected Residual Minimization Formulation for a Class of Stochastic Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 545-566, November.
    10. Q. H. Ansari & G. M. Lee, 2010. "Nonsmooth Vector Optimization Problems and Minty Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 1-16, April.
    11. M. Oveisiha & J. Zafarani, 2012. "Vector optimization problem and generalized convexity," Journal of Global Optimization, Springer, vol. 52(1), pages 29-43, January.
    12. Giovanni P. Crespi & Carola Schrage, 2021. "Applying set optimization to weak efficiency," Annals of Operations Research, Springer, vol. 296(1), pages 779-801, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:56:y:2013:i:4:p:1617-1629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.