IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/945.html
   My bibliography  Save this paper

The Frobenius Problem and Maximal Lattice Free Bodies

Author

Listed:

Abstract

Let p = (p_{1},...,p_{n}) be a vector of positive integers whose greatest common divisor is unity. The Frobenius problem is to find the largest integer f* which cannot be written as a non-negative integral combination of the p_{i}.In this note we relate the Frobenius problem to the topic of maximal lattice free bodies and describe an algorithm for n = 3.

Suggested Citation

  • Herbert E. Scarf & Shallcross, David F., 1990. "The Frobenius Problem and Maximal Lattice Free Bodies," Cowles Foundation Discussion Papers 945, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:945
    Note: CFP 892.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d09/d0945.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    2. Herbert E. Scarf, 2008. "Production Sets with Indivisibilities Part II. The Case of Two Activities," Palgrave Macmillan Books, in: Zaifu Yang (ed.), Herbert Scarf’s Contributions to Economics, Game Theory and Operations Research, chapter 3, pages 39-67, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herbert E. Scarf & Kevin M. Woods, 2008. "Neighborhood Complexes and Generating Functions for Affine Semigroups," Palgrave Macmillan Books, in: Zaifu Yang (ed.), Herbert Scarf’s Contributions to Economics, Game Theory and Operations Research, chapter 12, pages 207-225, Palgrave Macmillan.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
    2. I. Bárány & H. E. Scarf & D. Shallcross, 2008. "The topological structure of maximal lattice free convex bodies: The general case," Palgrave Macmillan Books, in: Zaifu Yang (ed.), Herbert Scarf’s Contributions to Economics, Game Theory and Operations Research, chapter 11, pages 191-205, Palgrave Macmillan.
    3. M. Köppe & M. Queyranne & C. T. Ryan, 2010. "Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 137-150, July.
    4. K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.
    5. Gerard van der Laan & Dolf Talman & Zaifu Yang, 2004. "Solving Discrete Zero Point Problems," Tinbergen Institute Discussion Papers 04-112/1, Tinbergen Institute.
    6. Kala Krishna & Cemile Yavas, 2004. "Lumpy consumer durables, market power, and endogenous business cycles," Canadian Journal of Economics, Canadian Economics Association, vol. 37(2), pages 375-391, May.
    7. Cesaroni, Giovanni & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2017. "Global and local scale characteristics in convex and nonconvex nonparametric technologies: A first empirical exploration," European Journal of Operational Research, Elsevier, vol. 259(2), pages 576-586.
    8. Truchon, Michel, 1988. "Programmation mathématique et théorie économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 64(2), pages 143-156, juin.
    9. Klaus Jansen & Roberto Solis-Oba, 2011. "A Polynomial Time OPT + 1 Algorithm for the Cutting Stock Problem with a Constant Number of Object Lengths," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 743-753, November.
    10. Kumaraswamy Velupillai, 2003. "Economics and the complexity vision: chimerical partners or elysian adventurers," Department of Economics Working Papers 0307, Department of Economics, University of Trento, Italia.
    11. Friedrich Eisenbrand & Gennady Shmonin, 2008. "Parametric Integer Programming in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 839-850, November.
    12. Yang, Z.F., 1994. "A simplicial algorithm for testing the integral properties of polytopes : A revision," Other publications TiSEM 72b67872-ca37-4bb5-8a13-7, Tilburg University, School of Economics and Management.
    13. Elizabeth Baldwin & Paul Klemperer, 2019. "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities," Econometrica, Econometric Society, vol. 87(3), pages 867-932, May.
    14. Jaykrishnan, G. & Levin, Asaf, 2024. "Scheduling with cardinality dependent unavailability periods," European Journal of Operational Research, Elsevier, vol. 316(2), pages 443-458.
    15. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    16. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    17. Kenneth J. Arrow & Timothy J. Kehoe, 1994. "Distinguished Fellow: Herbert Scarf's Contributions to Economics," Journal of Economic Perspectives, American Economic Association, vol. 8(4), pages 161-181, Fall.
    18. Kubale, Marek, 1996. "Preemptive versus nonpreemptive scheduling of biprocessor tasks on dedicated processors," European Journal of Operational Research, Elsevier, vol. 94(2), pages 242-251, October.
    19. Matthias Bentert & Robert Bredereck & Péter Györgyi & Andrzej Kaczmarczyk & Rolf Niedermeier, 2023. "A multivariate complexity analysis of the material consumption scheduling problem," Journal of Scheduling, Springer, vol. 26(4), pages 369-382, August.
    20. Danny Nguyen & Igor Pak, 2020. "The Computational Complexity of Integer Programming with Alternations," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 191-204, February.

    More about this item

    Keywords

    Algorithm; Frobenius problem;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.