IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3525-d267048.html
   My bibliography  Save this article

Environmental Sustainability of Road Transport in OECD Countries

Author

Listed:
  • Fei Mo

    (School of Law, Renmin University of China, Beijing 100872, China)

  • Derek Wang

    (Business School, Capital University of Economics and Business, Beijing 100070, China)

Abstract

Road transport is a primary source of various forms of air pollution and climate-impacting emissions, and contains huge potential for improving the environment and combating climate change. This paper studies the environmental sustainability of road transport for a set of OECD countries over the period 2000–2014. We capture the sustainability performance of road transport in two data envelopment analysis (DEA) models, corresponding to the concepts of natural disposability and managerial disposability, respectively. Air pollution and carbon emissions are treated as undesirable outputs. The models produce two unified measures of environmental sustainability performance, accounting for transport activities and environmental impacts simultaneously. We find that the studied countries have improved their overall managerial disposability performance from 2000 to 2014, driven by technological progress and tightening regulations on fuel economy and vehicle emissions. The analysis enables us to identify best-practice and laggard countries in transport sustainability.

Suggested Citation

  • Fei Mo & Derek Wang, 2019. "Environmental Sustainability of Road Transport in OECD Countries," Energies, MDPI, vol. 12(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3525-:d:267048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sueyoshi, Toshiyuki & Wang, Derek, 2014. "Radial and non-radial approaches for environmental assessment by Data Envelopment Analysis: Corporate sustainability and effective investment for technology innovation," Energy Economics, Elsevier, vol. 45(C), pages 537-551.
    2. Nihit Goyal & Michael Howlett, 2018. "Technology and Instrument Constituencies as Agents of Innovation: Sustainability Transitions and the Governance of Urban Transport," Energies, MDPI, vol. 11(5), pages 1-14, May.
    3. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    4. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    5. Takahiko Kiso, 2019. "Environmental Policy and Induced Technological Change: Evidence from Automobile Fuel Economy Regulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 785-810, October.
    6. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries," Energy Economics, Elsevier, vol. 34(3), pages 686-699.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    10. Jeremy Eppel, 1999. "Sustainable Development and Environment: a Renewed Effort in the OECD," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 1(1), pages 41-53, March.
    11. Toshiyuki Sueyoshi & Mika Goto, 2017. "World trend in energy: an extension to DEA applied to energy and environment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-23, December.
    12. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    13. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    14. Stefan Bakker & Kathleen Dematera Contreras & Monica Kappiantari & Nguyen Anh Tuan & Marie Danielle Guillen & Gessarin Gunthawong & Mark Zuidgeest & Duncan Liefferink & Martin Van Maarseveen, 2017. "Low-Carbon Transport Policy in Four ASEAN Countries: Developments in Indonesia, the Philippines, Thailand and Vietnam," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    15. Daraio, Cinzia & Diana, Marco & Di Costa, Flavia & Leporelli, Claudio & Matteucci, Giorgio & Nastasi, Alberto, 2016. "Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research," European Journal of Operational Research, Elsevier, vol. 248(1), pages 1-20.
    16. Kristof Witte & Rui Marques, 2010. "Influential observations in frontier models, a robust non-oriented approach to the water sector," Annals of Operations Research, Springer, vol. 181(1), pages 377-392, December.
    17. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry," European Journal of Operational Research, Elsevier, vol. 216(3), pages 668-678.
    19. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    20. Erling Holden & Geoffrey Gilpin & David Banister, 2019. "Sustainable Mobility at Thirty," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    21. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2015. "Assessing environmental performance trends in the transport industry: Eco-innovation or catching-up?," Energy Economics, Elsevier, vol. 51(C), pages 570-580.
    22. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    23. Lisa Hansson & Lena Nerhagen, 2019. "Regulatory Measurements in Policy Coordinated Practices: The Case of Promoting Renewable Energy and Cleaner Transport in Sweden," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    24. Derek Wang & Tianchi Li, 2018. "Carbon Emission Performance of Independent Oil and Natural Gas Producers in the United States," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshiyuki Sueyoshi & Mika Goto, 2021. "Performance Assessment of Japanese Electricity and Gas Companies during 2002–2018: Three DEA Approaches," Energies, MDPI, vol. 14(6), pages 1-18, March.
    2. Fontaine Dubois Bissai & Bienvenu Gael Fouda Mbanga & Cyrille Adiang Mezoue & Séverin Nguiya, 2023. "An Analysis of the Driving Factors Related to Energy Consumption in the Road Transport Sector of the City of Douala, Cameroon," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    3. Leonidas Sotirios Kyrgiakos & George Vlontzos & Panos M. Pardalos, 2021. "Ranking EU Agricultural Sectors under the Prism of Alternative Widths on Window DEA," Energies, MDPI, vol. 14(4), pages 1-26, February.
    4. Toshiyuki Sueyoshi & Mika Goto, 2023. "Energy Intensity, Energy Efficiency and Economic Growth among OECD Nations from 2000 to 2019," Energies, MDPI, vol. 16(4), pages 1-29, February.
    5. Talat S. Genc & Stephen Kosempel, 2023. "Energy Transition and the Economy: A Review Article," Energies, MDPI, vol. 16(7), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    2. Sueyoshi, Toshiyuki & Wang, Derek, 2018. "DEA environmental assessment on US petroleum industry: Non-radial approach with translation invariance in time horizon," Energy Economics, Elsevier, vol. 72(C), pages 276-289.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    6. Khoshroo, Alireza & Izadikhah, Mohammad & Emrouznejad, Ali, 2022. "Total factor energy productivity considering undesirable pollutant outputs: A new double frontier based malmquist productivity index," Energy, Elsevier, vol. 258(C).
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Environmental assessment for corporate sustainability by resource utilization and technology innovation: DEA radial measurement on Japanese industrial sectors," Energy Economics, Elsevier, vol. 46(C), pages 295-307.
    8. Charles, Vincent & Kumar, Mukesh & Irene Kavitha, S., 2012. "Measuring the efficiency of assembled printed circuit boards with undesirable outputs using data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 136(1), pages 194-206.
    9. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    10. Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
    11. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Marginal Rate of Transformation and Rate of Substitution measured by DEA environmental assessment: Comparison among European and North American nations," Energy Economics, Elsevier, vol. 56(C), pages 270-287.
    12. Pyoungsoo Lee, 2022. "Ranking Decision Making for Eco-Efficiency Using Operational, Energy, and Environmental Efficiency," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    13. Derek Wang & Tianchi Li, 2018. "Carbon Emission Performance of Independent Oil and Natural Gas Producers in the United States," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    14. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies," Energy Economics, Elsevier, vol. 51(C), pages 329-345.
    15. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    16. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Japanese fuel mix strategy after disaster of Fukushima Daiichi nuclear power plant: Lessons from international comparison among industrial nations measured by DEA environmental assessment in time hori," Energy Economics, Elsevier, vol. 52(PA), pages 87-103.
    17. Sueyoshi, Toshiyuki & Wang, Derek, 2017. "Measuring scale efficiency and returns to scale on large commercial rooftop photovoltaic systems in California," Energy Economics, Elsevier, vol. 65(C), pages 389-398.
    18. Xiaohong Liu & Qingyuan Zhu & Junfei Chu & Xiang Ji & Xingchen Li, 2019. "Environmental Performance and Benchmarking Information for Coal-Fired Power Plants in China: A DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1287-1302, December.
    19. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    20. Sueyoshi, Toshiyuki & Yuan, Yan & Li, Aijun & Wang, Daoping, 2017. "Methodological comparison among radial, non-radial and intermediate approaches for DEA environmental assessment," Energy Economics, Elsevier, vol. 67(C), pages 439-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3525-:d:267048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.