IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5998-d446337.html
   My bibliography  Save this article

Performance Assessment of the Semiconductor Industry: Measured by DEA Environmental Assessment

Author

Listed:
  • Toshiyuki Sueyoshi

    (Department of Management, New Mexico Institute of Mining & Technology, 801 Leroy Place, Socorro, NM 87801, USA
    Tokyo Institute of Technology, Tokyo Tech World Research Hub Initiative, School of Environment and Society, 3-6 Shibaura, Minato-ku, Tokyo 108-0023, Japan)

  • Youngbok Ryu

    (College of Professional Studies, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA)

Abstract

This study measures the unified (i.e., operational and environmental) performance of semiconductor firms in the world by using Data Envelopment Analysis (DEA) environmental assessment. With its promising and expanding electronic applications, many industrial nations have supported the semiconductor industry under their strategic plans, and numerous firms are involved in the global value chain. Drawing on the proposed DEA-based environmental (sustainability) assessment, which uses two disposability criteria (i.e., natural and managerial), this study first compute the unified efficiency scores of semiconductor firms. Then, this study explores how corporate age, business model, and location influence the efficiency scores by employing Tobit regressions and t -tests. The empirical implications obtained from this research indicate that overall, the semiconductor firms look for their economic achievements but are not paying enough attention to environmental sustainability. Corporate age and business model are statistically related with their operational performance measures whereas corporate location is related with their environmental ones.

Suggested Citation

  • Toshiyuki Sueyoshi & Youngbok Ryu, 2020. "Performance Assessment of the Semiconductor Industry: Measured by DEA Environmental Assessment," Energies, MDPI, vol. 13(22), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5998-:d:446337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
    2. Cheng, Shu-Ling & Chang, Hae-Ching, 2009. "Performance implications of cognitive complexity: An empirical study of cognitive strategic groups in semiconductor industry," Journal of Business Research, Elsevier, vol. 62(12), pages 1311-1320, December.
    3. Robert Salomon & Xavier Martin, 2008. "Learning, Knowledge Transfer, and Technology Implementation Performance: A Study of Time-to-Build in the Global Semiconductor Industry," Management Science, INFORMS, vol. 54(7), pages 1266-1280, July.
    4. Megna, Pamela & Klock, Mark, 1993. "The Impact on Intangible Capital on Tobin's q in the Semiconductor Industry," American Economic Review, American Economic Association, vol. 83(2), pages 265-269, May.
    5. Fengyi Lin & Sheng-Wei Lin & Wen-Min Lu, 2018. "Sustainability Assessment of Taiwan’s Semiconductor Industry: A New Hybrid Model Using Combined Analytic Hierarchy Process and Two-Stage Additive Network Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    6. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    7. Toshiyuki Sueyoshi & Mika Goto, 2017. "World trend in energy: an extension to DEA applied to energy and environment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-23, December.
    8. Yu-Shan Chen & Chun-Yu Shih & Ching-Hsun Chang, 2012. "The effects of related and unrelated technological diversification on innovation performance and corporate growth in the Taiwan’s semiconductor industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(1), pages 117-134, July.
    9. Bi, Kexin & Huang, Ping & Wang, Xiangxiang, 2016. "Innovation performance and influencing factors of low-carbon technological innovation under the global value chain: A case of Chinese manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 275-284.
    10. Lo, Shih-Fang, 2010. "Global warming action of Taiwan’s semiconductor/TFT-LCD industries: How does voluntary agreement work in the IT industry?," Technology in Society, Elsevier, vol. 32(3), pages 249-254.
    11. Toshiyuki Sueyoshi & Yan Yuan, 2018. "Measuring energy usage and sustainability development in Asian nations by DEA intermediate approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-18, December.
    12. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    13. Yin-Hui Cheng & Fu-Yung Kuan & Shih-Chieh Chuang & Yun Ken, 2010. "Profitability decided by patent quality? An empirical study of the U.S. semiconductor industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 175-183, January.
    14. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies," Energy Economics, Elsevier, vol. 51(C), pages 329-345.
    15. Ki‐Hoon Lee & Ji‐Whan Kim, 2011. "Integrating Suppliers into Green Product Innovation Development: an Empirical Case Study in the Semiconductor Industry," Business Strategy and the Environment, Wiley Blackwell, vol. 20(8), pages 527-538, December.
    16. Sueyoshi, Toshiyuki & Yuan, Yan & Li, Aijun & Wang, Daoping, 2017. "Methodological comparison among radial, non-radial and intermediate approaches for DEA environmental assessment," Energy Economics, Elsevier, vol. 67(C), pages 439-453.
    17. Sueyoshi, Toshiyuki & Goto, Mika, 2019. "The intermediate approach to sustainability enhancement and scale-related measures in environmental assessment," European Journal of Operational Research, Elsevier, vol. 276(2), pages 744-756.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry," European Journal of Operational Research, Elsevier, vol. 216(3), pages 668-678.
    19. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Environmental assessment by DEA radial measurement: U.S. coal-fired power plants in ISO (Independent System Operator) and RTO (Regional Transmission Organization)," Energy Economics, Elsevier, vol. 34(3), pages 663-676.
    20. Adel HATAMI-MARBINI & Per J. AGRELL & Madjid TAVANA & Pegah KHOSHNEVIS, 2017. "A flexible cross-efficiency fuzzy data envelopment analysis model for sustainable sourcing," LIDAM Reprints CORE 2880, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Ping Shen & Jung-Fa Tsai, 2022. "Evaluating the Sustainable Development of the Semiconductor Industry Using BWM and Fuzzy TOPSIS," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    2. Umar, Zaghum & Adekoya, Oluwasegun Babatunde & Oliyide, Johnson Ayobami & Gubareva, Mariya, 2021. "Media sentiment and short stocks performance during a systemic crisis," International Review of Financial Analysis, Elsevier, vol. 78(C).
    3. Qiao Guangshun & Lu Yulin, 2024. "Operating Efficiency in the Capital-Intensive Semiconductor Industry: A Nonparametric Frontier Approach," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 18(1), pages 1-17, January.
    4. Lingli Qing & Ibrahim Alnafrah & Abd Alwahed Dagestani, 2024. "Does green technology innovation benefit corporate financial performance? Investigating the moderating effect of media coverage," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 1722-1740, May.
    5. Youngbok Ryu & Toshiyuki Sueyoshi, 2021. "Examining the Relationship between the Economic Performance of Technology-Based Small Suppliers and Socially Sustainable Procurement," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    6. Toshiyuki Sueyoshi & Youngbok Ryu, 2021. "Environmental Assessment and Sustainable Development in the United States," Energies, MDPI, vol. 14(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mika Goto & Toshiyuki Sueyoshi, 2020. "Sustainable development and corporate social responsibility in Japanese manufacturing companies," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 844-856, July.
    2. Sueyoshi, Toshiyuki & Wang, Derek, 2018. "DEA environmental assessment on US petroleum industry: Non-radial approach with translation invariance in time horizon," Energy Economics, Elsevier, vol. 72(C), pages 276-289.
    3. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    4. Sueyoshi, Toshiyuki & Goto, Mika, 2019. "The intermediate approach to sustainability enhancement and scale-related measures in environmental assessment," European Journal of Operational Research, Elsevier, vol. 276(2), pages 744-756.
    5. Jie Liu & Chunhui Yuan & Xiaolong Li, 2019. "The Environmental Assessment on Chinese Logistics Enterprises Based on Non-Radial DEA," Energies, MDPI, vol. 12(24), pages 1-18, December.
    6. Sueyoshi, Toshiyuki & Yuan, Yan & Li, Aijun & Wang, Daoping, 2017. "Methodological comparison among radial, non-radial and intermediate approaches for DEA environmental assessment," Energy Economics, Elsevier, vol. 67(C), pages 439-453.
    7. Toshiyuki Sueyoshi & Yan Yuan & Aijun Li & Daoping Wang, 2017. "Social Sustainability of Provinces in China: A Data Envelopment Analysis (DEA) Window Analysis under the Concepts of Natural and Managerial Disposability," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    8. Toshiyuki Sueyoshi & Mika Goto, 2019. "DEA Non-Radial Approach for Resource Allocation and Energy Usage to Enhance Corporate Sustainability in Japanese Manufacturing Industries," Energies, MDPI, vol. 12(9), pages 1-22, May.
    9. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    10. Sueyoshi, Toshiyuki & Li, Aijun & Liu, Xiaohong, 2019. "Exploring sources of China's CO2 emission: Decomposition analysis under different technology changes," European Journal of Operational Research, Elsevier, vol. 279(3), pages 984-995.
    11. Toshiyuki Sueyoshi & Zemin Du & Derek Wang, 2020. "Regional Sustainable Development with Environmental Performance: Measuring Growth Indexes on Chinese Provinces," Energies, MDPI, vol. 13(8), pages 1-21, April.
    12. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    13. Li, Aijun & Zhang, Aizhen & Huang, Huijie & Yao, Xin, 2018. "Measuring unified efficiency of fossil fuel power plants across provinces in China: An analysis based on non-radial directional distance functions," Energy, Elsevier, vol. 152(C), pages 549-561.
    14. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Returns to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for s," Energy Economics, Elsevier, vol. 56(C), pages 288-309.
    15. Fei Mo & Derek Wang, 2019. "Environmental Sustainability of Road Transport in OECD Countries," Energies, MDPI, vol. 12(18), pages 1-14, September.
    16. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Marginal Rate of Transformation and Rate of Substitution measured by DEA environmental assessment: Comparison among European and North American nations," Energy Economics, Elsevier, vol. 56(C), pages 270-287.
    17. Toshiyuki Sueyoshi & Mika Goto, 2018. "Difficulties and remedies on DEA environmental assessment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-20, December.
    18. Derek Wang & Tianchi Li, 2018. "Carbon Emission Performance of Independent Oil and Natural Gas Producers in the United States," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    19. Xiaoyang Zhou & Hao Chen & Hao Wang & Benjamin Lev & Lifang Quan, 2019. "Natural and Managerial Disposability Based DEA Model for China’s Regional Environmental Efficiency Assessment," Energies, MDPI, vol. 12(18), pages 1-20, September.
    20. Sueyoshi, Toshiyuki & Goto, Mika, 2016. "Undesirable congestion under natural disposability and desirable congestion under managerial disposability in U.S. electric power industry measured by DEA environmental assessment," Energy Economics, Elsevier, vol. 55(C), pages 173-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5998-:d:446337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.