IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i524p1541-1549.html
   My bibliography  Save this article

Interpretable Dynamic Treatment Regimes

Author

Listed:
  • Yichi Zhang
  • Eric B. Laber
  • Marie Davidian
  • Anastasios A. Tsiatis

Abstract

Precision medicine is currently a topic of great interest in clinical and intervention science. A key component of precision medicine is that it is evidence-based, that is, data-driven, and consequently there has been tremendous interest in estimation of precision medicine strategies using observational or randomized study data. One way to formalize precision medicine is through a treatment regime, which is a sequence of decision rules, one per stage of clinical intervention, that map up-to-date patient information to a recommended treatment. An optimal treatment regime is defined as maximizing the mean of some cumulative clinical outcome if applied to a population of interest. It is well-known that even under simple generative models an optimal treatment regime can be a highly nonlinear function of patient information. Consequently, a focal point of recent methodological research has been the development of flexible models for estimating optimal treatment regimes. However, in many settings, estimation of an optimal treatment regime is an exploratory analysis intended to generate new hypotheses for subsequent research and not to directly dictate treatment to new patients. In such settings, an estimated treatment regime that is interpretable in a domain context may be of greater value than an unintelligible treatment regime built using “black-box” estimation methods. We propose an estimator of an optimal treatment regime composed of a sequence of decision rules, each expressible as a list of “if-then” statements that can be presented as either a paragraph or as a simple flowchart that is immediately interpretable to domain experts. The discreteness of these lists precludes smooth, that is, gradient-based, methods of estimation and leads to nonstandard asymptotics. Nevertheless, we provide a computationally efficient estimation algorithm, prove consistency of the proposed estimator, and derive rates of convergence. We illustrate the proposed methods using a series of simulation examples and application to data from a sequential clinical trial on bipolar disorder. Supplementary materials for this article are available online.

Suggested Citation

  • Yichi Zhang & Eric B. Laber & Marie Davidian & Anastasios A. Tsiatis, 2018. "Interpretable Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1541-1549, October.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1541-1549
    DOI: 10.1080/01621459.2017.1345743
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1345743
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1345743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    2. Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
    3. Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
    4. Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
    5. Yingchao Zhong & Chang Wang & Lu Wang, 2021. "Survival Augmented Patient Preference Incorporated Reinforcement Learning to Evaluate Tailoring Variables for Personalized Healthcare," Stats, MDPI, vol. 4(4), pages 1-17, September.
    6. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    7. Shuxiao Chen & Bo Zhang, 2021. "Estimating and Improving Dynamic Treatment Regimes With a Time-Varying Instrumental Variable," Papers 2104.07822, arXiv.org.
    8. Gao, Yuhe & Shi, Chengchun & Song, Rui, 2023. "Deep spectral Q-learning with application to mobile health," LSE Research Online Documents on Economics 119445, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1541-1549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.