IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v49y2025i1d10.1007_s10878-024-01243-6.html
   My bibliography  Save this article

Customer segmentation using flying fox optimization algorithm

Author

Listed:
  • Konstantinos Zervoudakis

    (Technical University of Crete)

  • Stelios Tsafarakis

    (Technical University of Crete)

Abstract

Customer segmentation, a critical strategy in marketing, involves grouping consumers based on shared characteristics like age, income, and geographical location, enabling firms to effectively establish different strategies depending on the target group of customers. Clustering is a widely utilized data analysis technique that facilitates the identification of diverse groups, each distinguished by their unique set of characteristics. Traditional clustering techniques often lack in handling the complexity of consumer data. This paper introduces a novel approach employing the Flying Fox Optimization algorithm, inspired by the survival strategies of flying foxes, to determine customer segments. Applied to two different datasets, this method demonstrates superior capability in identifying distinct customer groups, thereby facilitating the development of targeted marketing strategies. Our comparative analysis with existing state-of-the-art as well as recently developed clustering methods reveals that the proposed method outperforms them in terms of segmentation capabilities. This research not only presents an innovative clustering technique in market segmentation but also showcases the potential of computational intelligence in improving marketing strategies, enhancing their alignment with each customer’s needs.

Suggested Citation

  • Konstantinos Zervoudakis & Stelios Tsafarakis, 2025. "Customer segmentation using flying fox optimization algorithm," Journal of Combinatorial Optimization, Springer, vol. 49(1), pages 1-20, January.
  • Handle: RePEc:spr:jcomop:v:49:y:2025:i:1:d:10.1007_s10878-024-01243-6
    DOI: 10.1007/s10878-024-01243-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01243-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01243-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radouane Aalloul & Abdellah Elaissaoui & Mourad Benlattar & Rhma Adhiri, 2023. "Emerging Parameters Extraction Method of PV Modules Based on the Survival Strategies of Flying Foxes Optimization (FFO)," Energies, MDPI, vol. 16(8), pages 1-24, April.
    2. Tsafarakis, Stelios & Zervoudakis, Konstantinos & Andronikidis, Andreas & Altsitsiadis, Efthymios, 2020. "Fuzzy self-tuning differential evolution for optimal product line design," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1161-1169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    2. Radouane Aalloul & Abdellah Elaissaoui & Mourad Benlattar & Rhma Adhiri, 2023. "Emerging Parameters Extraction Method of PV Modules Based on the Survival Strategies of Flying Foxes Optimization (FFO)," Energies, MDPI, vol. 16(8), pages 1-24, April.
    3. Lei Zhang & Rui Tang, 2023. "Dispatch for a Continuous-Time Microgrid Based on a Modified Differential Evolution Algorithm," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    4. Xuming Wang & Xiaobing Yu, 2024. "Differential Evolution Algorithm with Three Mutation Operators for Global Optimization," Mathematics, MDPI, vol. 12(15), pages 1-20, July.
    5. Wenda Zheng & Yibo Ai & Weidong Zhang, 2024. "Improved Snake Optimizer Using Sobol Sequential Nonlinear Factors and Different Learning Strategies and Its Applications," Mathematics, MDPI, vol. 12(11), pages 1-49, May.
    6. Jagadeesh Kumar, M. & Sampradeepraj, T. & Sivajothi, E. & Singh, Gurkirpal, 2024. "An efficient hybrid technique for energy management system with renewable energy system and energy storage system in smart grid," Energy, Elsevier, vol. 306(C).
    7. Manu Centeno-Telleria & Ekaitz Zulueta & Unai Fernandez-Gamiz & Daniel Teso-Fz-Betoño & Adrián Teso-Fz-Betoño, 2021. "Differential Evolution Optimal Parameters Tuning with Artificial Neural Network," Mathematics, MDPI, vol. 9(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:49:y:2025:i:1:d:10.1007_s10878-024-01243-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.