IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1708-d1405729.html
   My bibliography  Save this article

Improved Snake Optimizer Using Sobol Sequential Nonlinear Factors and Different Learning Strategies and Its Applications

Author

Listed:
  • Wenda Zheng

    (National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China)

  • Yibo Ai

    (National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China)

  • Weidong Zhang

    (National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

The Snake Optimizer (SO) is an advanced metaheuristic algorithm for solving complicated real-world optimization problems. However, despite its advantages, the SO faces certain challenges, such as susceptibility to local optima and suboptimal convergence performance in cases involving discretized, high-dimensional, and multi-constraint problems. To address these problems, this paper presents an improved version of the SO, known as the Snake Optimizer using Sobol sequential nonlinear factors and different learning strategies (SNDSO). Firstly, using Sobol sequences to generate better distributed initial populations helps to locate the global optimum solution faster. Secondly, the use of nonlinear factors based on the inverse tangent function to control the exploration and exploitation phases effectively improves the exploitation capability of the algorithm. Finally, introducing learning strategies improves the population diversity and reduces the probability of the algorithm falling into the local optimum trap. The effectiveness of the proposed SNDSO in solving discretized, high-dimensional, and multi-constraint problems is validated through a series of experiments. The performance of the SNDSO in tackling high-dimensional numerical optimization problems is first confirmed by using the Congress on Evolutionary Computation (CEC) 2015 and CEC2017 test sets. Then, twelve feature selection problems are used to evaluate the effectiveness of the SNDSO in discretized scenarios. Finally, five real-world technical multi-constraint optimization problems are employed to evaluate the performance of the SNDSO in high-dimensional and multi-constraint domains. The experiments show that the SNDSO effectively overcomes the challenges of discretization, high dimensionality, and multi-constraint problems and outperforms superior algorithms.

Suggested Citation

  • Wenda Zheng & Yibo Ai & Weidong Zhang, 2024. "Improved Snake Optimizer Using Sobol Sequential Nonlinear Factors and Different Learning Strategies and Its Applications," Mathematics, MDPI, vol. 12(11), pages 1-49, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1708-:d:1405729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsafarakis, Stelios & Zervoudakis, Konstantinos & Andronikidis, Andreas & Altsitsiadis, Efthymios, 2020. "Fuzzy self-tuning differential evolution for optimal product line design," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1161-1169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Rui Tang, 2023. "Dispatch for a Continuous-Time Microgrid Based on a Modified Differential Evolution Algorithm," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    2. Xuming Wang & Xiaobing Yu, 2024. "Differential Evolution Algorithm with Three Mutation Operators for Global Optimization," Mathematics, MDPI, vol. 12(15), pages 1-20, July.
    3. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    4. Radouane Aalloul & Abdellah Elaissaoui & Mourad Benlattar & Rhma Adhiri, 2023. "Emerging Parameters Extraction Method of PV Modules Based on the Survival Strategies of Flying Foxes Optimization (FFO)," Energies, MDPI, vol. 16(8), pages 1-24, April.
    5. Manu Centeno-Telleria & Ekaitz Zulueta & Unai Fernandez-Gamiz & Daniel Teso-Fz-Betoño & Adrián Teso-Fz-Betoño, 2021. "Differential Evolution Optimal Parameters Tuning with Artificial Neural Network," Mathematics, MDPI, vol. 9(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1708-:d:1405729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.