IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i15p2311-d1441498.html
   My bibliography  Save this article

Differential Evolution Algorithm with Three Mutation Operators for Global Optimization

Author

Listed:
  • Xuming Wang

    (Engineering Training Center, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Xiaobing Yu

    (School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract

Differential evolution algorithm is a very powerful and recently proposed evolutionary algorithm. Generally, only a mutation operator and predefined parameter values of differential evolution algorithm are utilized to solve various optimization problems, which limits the performance of the algorithm. In this paper, six commonly used mutation operators are divided into three categories according to their own features. A mutation pool is established based on the three categories. A parameter pool with three predefined values is designed. During evolution, three mutation operators are randomly chosen from the three categories, and three parameter values are also randomly selected from the parameter pool. The three groups of mutation operators and parameter values are employed to produce trial vectors. The proposed algorithm makes good use of different mutation operators. Three recently proposed differential evolution variants and three non-differential evolution algorithms are used to make comparisons on the 29 testing functions from CEC. The experimental results have demonstrated that the proposed algorithm is very competitive. The proposed algorithm is utilized to solve three real applications, and the results are superior.

Suggested Citation

  • Xuming Wang & Xiaobing Yu, 2024. "Differential Evolution Algorithm with Three Mutation Operators for Global Optimization," Mathematics, MDPI, vol. 12(15), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2311-:d:1441498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/15/2311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/15/2311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsafarakis, Stelios & Zervoudakis, Konstantinos & Andronikidis, Andreas & Altsitsiadis, Efthymios, 2020. "Fuzzy self-tuning differential evolution for optimal product line design," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1161-1169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Rui Tang, 2023. "Dispatch for a Continuous-Time Microgrid Based on a Modified Differential Evolution Algorithm," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    2. Wenda Zheng & Yibo Ai & Weidong Zhang, 2024. "Improved Snake Optimizer Using Sobol Sequential Nonlinear Factors and Different Learning Strategies and Its Applications," Mathematics, MDPI, vol. 12(11), pages 1-49, May.
    3. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    4. Radouane Aalloul & Abdellah Elaissaoui & Mourad Benlattar & Rhma Adhiri, 2023. "Emerging Parameters Extraction Method of PV Modules Based on the Survival Strategies of Flying Foxes Optimization (FFO)," Energies, MDPI, vol. 16(8), pages 1-24, April.
    5. Manu Centeno-Telleria & Ekaitz Zulueta & Unai Fernandez-Gamiz & Daniel Teso-Fz-Betoño & Adrián Teso-Fz-Betoño, 2021. "Differential Evolution Optimal Parameters Tuning with Artificial Neural Network," Mathematics, MDPI, vol. 9(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2311-:d:1441498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.