IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v47y2024i5d10.1007_s10878-024-01176-0.html
   My bibliography  Save this article

An intensification approach based on fitness landscape characteristics for job shop scheduling problem

Author

Listed:
  • Aparecida de Fátima Castello Rosa

    (Universidade Nove de Julho)

  • Fabio Henrique Pereira

    (Universidade Nove de Julho
    Universidade Nove de Julho)

Abstract

This work deals with the classical Job Shop Scheduling Problem (JSSP) of minimizing the makespan. Metaheuristics are often used on the JSSP solution, but a performance comparable to the state-of-the-art depends on an efficient exploration of the solutions space characteristics. Thus, it is proposed an intensification approach based on the concepts of attraction basins and big valley. Suboptimal solutions obtained by the metaheuristic genetic algorithm are selected and subjected to intensification, in which a binary Bidimensional Genetic Algorithm (BGA) is utilized to enlarge the search neighborhood from a current solution, to escape of attraction basins. Then, the best solution found in this neighborhood is used as the final point of the path relinking strategy derived from the initial suboptimal solution, for exploring possible big valleys. Finally, the best solution in the path is inserted into the population. Trials with usual instances of the literature show that the proposed approach yields greater results with regards to local search, based on permutation of operations on critical blocks, either on the makespan reduction or on the number of generations, and competitive results regarding the contemporary literature.

Suggested Citation

  • Aparecida de Fátima Castello Rosa & Fabio Henrique Pereira, 2024. "An intensification approach based on fitness landscape characteristics for job shop scheduling problem," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-21, July.
  • Handle: RePEc:spr:jcomop:v:47:y:2024:i:5:d:10.1007_s10878-024-01176-0
    DOI: 10.1007/s10878-024-01176-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01176-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01176-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    2. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    3. Jean-Paul Watson, 2010. "An Introduction to Fitness Landscape Analysis and Cost Models for Local Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 599-623, Springer.
    4. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    5. D.C. Mattfeld & C. Bierwirth & H. Kopfer, 1999. "A search space analysis of the Job Shop Scheduling Problem," Annals of Operations Research, Springer, vol. 86(0), pages 441-453, January.
    6. Akkan, Can & Karabati, Selcuk, 2004. "The two-machine flowshop total completion time problem: Improved lower bounds and a branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 159(2), pages 420-429, December.
    7. Fred Glover & Michele Samorani, 2019. "Intensification, Diversification and Learning in metaheuristic optimization," Journal of Heuristics, Springer, vol. 25(4), pages 517-520, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    2. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    3. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    4. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    5. Chen, Haoxun & Luh, Peter B., 2003. "An alternative framework to Lagrangian relaxation approach for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 149(3), pages 499-512, September.
    6. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    7. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
    8. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    9. Tarantilis, C. D. & Kiranoudis, C. T., 2002. "A list-based threshold accepting method for job shop scheduling problems," International Journal of Production Economics, Elsevier, vol. 77(2), pages 159-171, May.
    10. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    11. P Corry & E Kozan, 2004. "Job scheduling with technical constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 160-169, February.
    12. Drótos, Márton & Erdos, Gábor & Kis, Tamás, 2009. "Computing lower and upper bounds for a large-scale industrial job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 296-306, August.
    13. Aardal, K. & van Hoesel, C.P.M. & Lenstra, J.K. & Stougie, L., 1997. "A decade of combinatorial optimization," Research Memorandum 023, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    14. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    15. Buscher, Udo & Shen, Liji, 2009. "An integrated tabu search algorithm for the lot streaming problem in job shops," European Journal of Operational Research, Elsevier, vol. 199(2), pages 385-399, December.
    16. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    17. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    18. Ansis Ozolins, 2020. "Bounded dynamic programming algorithm for the job shop problem with sequence dependent setup times," Operational Research, Springer, vol. 20(3), pages 1701-1728, September.
    19. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    20. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:47:y:2024:i:5:d:10.1007_s10878-024-01176-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.