IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i1d10.1007_s10878-021-00819-w.html
   My bibliography  Save this article

The sum of root-leaf distance interdiction problem by upgrading edges/nodes on trees

Author

Listed:
  • Qiao Zhang

    (Southeast University)

  • Xiucui Guan

    (Southeast University)

  • Junhua Jia

    (Southeast University)

  • Xinqiang Qian

    (Southeast University)

Abstract

Network interdiction problems by upgading critical edges/nodes have important applications to reduce the infectivity of the COVID-19. A network of confirmed cases can be described as a rooted tree that has a weight of infectious intensity for each edge. Upgrading edges (nodes) can reduce the infectious intensity with contacts by taking prevention measures such as disinfection (treating the confirmed cases, isolating their close contacts or vaccinating the uninfected people). We take the sum of root-leaf distance on a rooted tree as the whole infectious intensity of the tree. Hence, we consider the sum of root-leaf distance interdiction problem by upgrading edges/nodes on trees (SDIPT-UE/N). The problem (SDIPT-UE) aims to minimize the sum of root-leaf distance by reducing the weights of some critical edges such that the upgrade cost under some measurement is upper-bounded by a given value. Different from the problem (SDIPT-UE), the problem (SDIPT-UN) aims to upgrade a set of critical nodes to reduce the weights of the edges adjacent to the nodes. The relevant minimum cost problem (MCSDIPT-UE/N) aims to minimize the upgrade cost on the premise that the sum of root-leaf distance is upper-bounded by a given value. We develop different norms to measure the upgrade cost. Under weighted Hamming distance, we show the problems (SDIPT-UE/N) and (MCSDIPT-UE/N) are NP-hard by showing the equivalence of the two problems and the 0–1 knapsack problem. Under weighted $$l_1$$ l 1 norm, we solve the problems (SDIPT-UE) and (MCSDIPT-UE) in O(n) time by transforimg them into continuous knapsack problems. We propose two linear time greedy algorithms to solve the problem (SDIPT-UE) under unit Hamming distance and the problem (SDIPT-UN) with unit cost, respectively. Furthermore, for the the minimum cost problem (MCSDIPT-UE) under unit Hamming distance and the problem (MCSDIPT-UN) with unit cost, we provide two $$O(n\log n)$$ O ( n log n ) time algorithms by the binary search methods. Finally, we perform some numerical experiments to compare the results obtained by these algorithms.

Suggested Citation

  • Qiao Zhang & Xiucui Guan & Junhua Jia & Xinqiang Qian, 2022. "The sum of root-leaf distance interdiction problem by upgrading edges/nodes on trees," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 74-93, August.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:1:d:10.1007_s10878-021-00819-w
    DOI: 10.1007/s10878-021-00819-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00819-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00819-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Li & Xiucui Guan & Qiao Zhang & Xinyi Yin & Panos M. Pardalos, 2024. "The sum of root-leaf distance interdiction problem with cardinality constraint by upgrading edges on trees," Journal of Combinatorial Optimization, Springer, vol. 48(5), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    2. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    3. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    4. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    5. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    6. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    7. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    8. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.
    9. Valentini, Luca & Perugini, Diego & Poli, Giampiero, 2007. "The “small-world” topology of rock fracture networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 323-328.
    10. Enrico Zio & Giovanni Sansavini, 2011. "Component Criticality in Failure Cascade Processes of Network Systems," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1196-1210, August.
    11. Ryan M. Hynes & Bernardo S. Buarque & Ronald B. Davies & Dieter F. Kogler, 2020. "Hops, Skip & a Jump - The Regional Uniqueness of Beer Styles," Working Papers 202013, Geary Institute, University College Dublin.
    12. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    13. Lenore Newman & Ann Dale, 2007. "Homophily and Agency: Creating Effective Sustainable Development Networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(1), pages 79-90, February.
    14. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    15. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    16. Cicchini, Tomás & Caridi, Inés & Ermann, Leonardo, 2024. "Robustness of the public transport network against attacks on its routes," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    17. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    18. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    19. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    20. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:1:d:10.1007_s10878-021-00819-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.