IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v43y2022i5d10.1007_s10878-020-00614-z.html
   My bibliography  Save this article

Reconfiguration of garbage collection system based on Voronoi graph theory: a simulation case of Beijing region

Author

Listed:
  • Chun-lin Xin

    (Beijing University of Chemical Technology)

  • Shuo Liang

    (Beijing University of Chemical Technology)

  • Feng-wu Shen

    (Beijing Environmental Sanitation Engineering Group)

Abstract

With urban development, many small urban areas are being integrated into large ones, which leads to redundancy of domestic waste disposal facilities. How to optimize these facilities is a major problem of urban administrative departments. In this study, we consider three strategies to deal with this problem, which are redundant deletion, garbage bin redistribution, and system reconstruction, through which, we have carried out the redivision of facilities area and the relocation of facilities. Three mathematical models are designed, and Voronoi technology and a clustering algorithm are applied to handle them. Finally, a simulation case based on the regional integration of the Old Eastern, Old West, Chongwen, and Xuanwu Districts in Beijing is studied, and the research results show that the efficiency of the system is increased from 74.9% to 85.9%, to 95.6%, and to 100%.

Suggested Citation

  • Chun-lin Xin & Shuo Liang & Feng-wu Shen, 2022. "Reconfiguration of garbage collection system based on Voronoi graph theory: a simulation case of Beijing region," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 953-973, July.
  • Handle: RePEc:spr:jcomop:v:43:y:2022:i:5:d:10.1007_s10878-020-00614-z
    DOI: 10.1007/s10878-020-00614-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00614-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00614-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erkut, Erhan & Karagiannidis, Avraam & Perkoulidis, George & Tjandra, Stevanus A., 2008. "A multicriteria facility location model for municipal solid waste management in North Greece," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1402-1421, June.
    2. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "A bi-objective modeling approach applied to an urban semi-desirable facility location problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 203-213.
    3. H. Asefi & S. Lim & M. Maghrebi & S. Shahparvari, 2019. "Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management," Annals of Operations Research, Springer, vol. 273(1), pages 75-110, February.
    4. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    5. Bautista, Joaquín & Pereira, Jordi, 2006. "Modeling the problem of locating collection areas for urban waste management. An application to the metropolitan area of Barcelona," Omega, Elsevier, vol. 34(6), pages 617-629, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-lin Xin & Shuo Liang & Feng-wu Shen, 0. "Reconfiguration of garbage collection system based on Voronoi graph theory: a simulation case of Beijing region," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-21.
    2. Vidovic, Milorad & Dimitrijevic, Branka & Ratkovic, Branislava & Simic, Vladimir, 2011. "A novel covering approach to positioning ELV collection points," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 1-9.
    3. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    4. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "A bi-objective modeling approach applied to an urban semi-desirable facility location problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 203-213.
    5. Yue Shen & Cheng Wang, 2021. "Optimisation of Garbage Bin Layout in Rural Infrastructure for Promoting the Renovation of Rural Human Settlements: Case Study of Yuding Village in China," IJERPH, MDPI, vol. 18(21), pages 1-14, November.
    6. Hao Yu & Wei Deng Solvang, 2017. "A multi-objective location-allocation optimization for sustainable management of municipal solid waste," Environment Systems and Decisions, Springer, vol. 37(3), pages 289-308, September.
    7. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    8. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    9. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    10. Gaston Tchang, 2016. "The impact of highway proximity on distribution centres’ rents," Urban Studies, Urban Studies Journal Limited, vol. 53(13), pages 2834-2848, October.
    11. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    12. Overholts II, Dale L. & Bell, John E. & Arostegui, Marvin A., 2009. "A location analysis approach for military maintenance scheduling with geographically dispersed service areas," Omega, Elsevier, vol. 37(4), pages 838-852, August.
    13. Lili Mei & Deshi Ye & Yong Zhang, 2018. "Approximation strategy-proof mechanisms for obnoxious facility location on a line," Journal of Combinatorial Optimization, Springer, vol. 36(2), pages 549-571, August.
    14. Emde, Simon & Boysen, Nils, 2012. "Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 135(1), pages 393-402.
    15. Loumeau, Gabriel, 2023. "Locating Public Facilities: Theory and Micro Evidence from Paris," Journal of Urban Economics, Elsevier, vol. 135(C).
    16. Yu, Yang & Tang, Jiafu & Gong, Jun & Yin, Yong & Kaku, Ikou, 2014. "Mathematical analysis and solutions for multi-objective line-cell conversion problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 774-786.
    17. H. Asefi & S. Lim & M. Maghrebi & S. Shahparvari, 2019. "Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management," Annals of Operations Research, Springer, vol. 273(1), pages 75-110, February.
    18. Teixeira, Joao C. & Antunes, Antonio P., 2008. "A hierarchical location model for public facility planning," European Journal of Operational Research, Elsevier, vol. 185(1), pages 92-104, February.
    19. Yimeng Shi & Hongyuan Zhang & Zheng Chen & Yueyue Sun & Xuecheng Liu & Jin Gu, 2023. "A Study on the Deployment of Mesoscale Chemical Hazard Area Monitoring Points by Combining Weighting and Fireworks Algorithms," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    20. Alessio Ishizaka & Philippe Nemery, 2013. "A Multi-Criteria Group Decision Framework for Partner Grouping When Sharing Facilities," Group Decision and Negotiation, Springer, vol. 22(4), pages 773-799, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:43:y:2022:i:5:d:10.1007_s10878-020-00614-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.