IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v34y2006i6p617-629.html
   My bibliography  Save this article

Modeling the problem of locating collection areas for urban waste management. An application to the metropolitan area of Barcelona

Author

Listed:
  • Bautista, Joaquín
  • Pereira, Jordi

Abstract

Reverse logistics problems arising in municipal waste management are both wide-ranging and varied. The usual collection system in UE countries is composed of two phases. First, citizens leave their refuse at special collection areas where different types of waste (glass, paper, plastic, organic material) are stored in special refuse bins. Subsequently, each type of waste is collected separately and moved to its final destination (a recycling plant or refuse dump). The present study focuses on the problem of locating these collection areas. We establish the relationship between the problem, the set covering problem and the MAX-SAT problem and then go on to develop a genetic algorithm and a GRASP heuristic to, respectively, solve each formulation. Finally, the quality of the algorithms is tested in a computational experience with real instances from the metropolitan area of Barcelona, as well as a reduced set of set covering instances from the literature.

Suggested Citation

  • Bautista, Joaquín & Pereira, Jordi, 2006. "Modeling the problem of locating collection areas for urban waste management. An application to the metropolitan area of Barcelona," Omega, Elsevier, vol. 34(6), pages 617-629, December.
  • Handle: RePEc:eee:jomega:v:34:y:2006:i:6:p:617-629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(05)00028-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arie Tamir, 1987. "On the Solution Value of the Continuous p -Center Location Problem on a Graph," Mathematics of Operations Research, INFORMS, vol. 12(2), pages 340-349, May.
    2. Grossman, Tal & Wool, Avishai, 1997. "Computational experience with approximation algorithms for the set covering problem," European Journal of Operational Research, Elsevier, vol. 101(1), pages 81-92, August.
    3. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    4. Alminana, Marcos & Pastor, Jesus T., 1997. "An adaptation of SH heuristic to the location set covering problem," European Journal of Operational Research, Elsevier, vol. 100(3), pages 586-593, August.
    5. Alberto Caprara & Matteo Fischetti & Paolo Toth, 1999. "A Heuristic Method for the Set Covering Problem," Operations Research, INFORMS, vol. 47(5), pages 730-743, October.
    6. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    7. Marshall L. Fisher & Pradeep Kedia, 1990. "Optimal Solution of Set Covering/Partitioning Problems Using Dual Heuristics," Management Science, INFORMS, vol. 36(6), pages 674-688, June.
    8. Haastrup, P. & Maniezzo, V. & Mattarelli, M. & Mazzeo Rinaldi, F. & Mendes, I. & Paruccini, M., 1998. "A decision support system for urban waste management," European Journal of Operational Research, Elsevier, vol. 109(2), pages 330-341, September.
    9. Beasley, J. E. & Jornsten, K., 1992. "Enhancing an algorithm for set covering problems," European Journal of Operational Research, Elsevier, vol. 58(2), pages 293-300, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fetter, Gary & Rakes, Terry, 2012. "Incorporating recycling into post-disaster debris disposal," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 14-22.
    2. Zamorano, M. & Molero, E. & Grindlay, A. & Rodríguez, M.L. & Hurtado, A. & Calvo, F.J., 2009. "A planning scenario for the application of geographical information systems in municipal waste collection: A case of Churriana de la Vega (Granada, Spain)," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 123-133.
    3. Tamás Bányai & Péter Tamás & Béla Illés & Živilė Stankevičiūtė & Ágota Bányai, 2019. "Optimization of Municipal Waste Collection Routing: Impact of Industry 4.0 Technologies on Environmental Awareness and Sustainability," IJERPH, MDPI, vol. 16(4), pages 1-26, February.
    4. Bell, John E. & Griffis, Stanley E. & Cunningham III, William A. & Eberlan, Jon A., 2011. "Location optimization of strategic alert sites for homeland defense," Omega, Elsevier, vol. 39(2), pages 151-158, April.
    5. Vidovic, Milorad & Dimitrijevic, Branka & Ratkovic, Branislava & Simic, Vladimir, 2011. "A novel covering approach to positioning ELV collection points," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 1-9.
    6. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    7. Gao, Chao & Yao, Xin & Weise, Thomas & Li, Jinlong, 2015. "An efficient local search heuristic with row weighting for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 750-761.
    8. Hao Yu & Wei Deng Solvang, 2017. "A multi-objective location-allocation optimization for sustainable management of municipal solid waste," Environment Systems and Decisions, Springer, vol. 37(3), pages 289-308, September.
    9. Yue Shen & Cheng Wang, 2021. "Optimisation of Garbage Bin Layout in Rural Infrastructure for Promoting the Renovation of Rural Human Settlements: Case Study of Yuding Village in China," IJERPH, MDPI, vol. 18(21), pages 1-14, November.
    10. Barker, Theresa J. & Zabinsky, Zelda B., 2011. "A multicriteria decision making model for reverse logistics using analytical hierarchy process," Omega, Elsevier, vol. 39(5), pages 558-573, October.
    11. Chun-lin Xin & Shuo Liang & Feng-wu Shen, 0. "Reconfiguration of garbage collection system based on Voronoi graph theory: a simulation case of Beijing region," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-21.
    12. Liang, Wen-Yau & Huang, Chun-Che, 2008. "A hybrid approach to constrained evolutionary computing: Case of product synthesis," Omega, Elsevier, vol. 36(6), pages 1072-1085, December.
    13. Chun-lin Xin & Shuo Liang & Feng-wu Shen, 2022. "Reconfiguration of garbage collection system based on Voronoi graph theory: a simulation case of Beijing region," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 953-973, July.
    14. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.
    15. Huang, Shan-Huen & Lin, Pei-Chun, 2015. "Vehicle routing–scheduling for municipal waste collection system under the “Keep Trash off the Ground” policy," Omega, Elsevier, vol. 55(C), pages 24-37.
    16. Jordi Pereira & Igor Averbakh, 2013. "The Robust Set Covering Problem with interval data," Annals of Operations Research, Springer, vol. 207(1), pages 217-235, August.
    17. Afrouz Rahmandoust & Ashkan Hafezalkotob & Bijan Rahmani Parchikolaei & Amir azizi, 2023. "Government intervention in municipal waste collection with a sustainable approach: a robust bi-level problem," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3323-3351, April.
    18. Overholts II, Dale L. & Bell, John E. & Arostegui, Marvin A., 2009. "A location analysis approach for military maintenance scheduling with geographically dispersed service areas," Omega, Elsevier, vol. 37(4), pages 838-852, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    2. Gao, Chao & Yao, Xin & Weise, Thomas & Li, Jinlong, 2015. "An efficient local search heuristic with row weighting for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 750-761.
    3. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    4. Cochran, Jeffery K. & Marquez Uribe, Alberto, 2005. "A set covering formulation for agile capacity planning within supply chains," International Journal of Production Economics, Elsevier, vol. 95(2), pages 139-149, February.
    5. Ablanedo-Rosas, José H. & Rego, César, 2010. "Surrogate constraint normalization for the set covering problem," European Journal of Operational Research, Elsevier, vol. 205(3), pages 540-551, September.
    6. Yagiura, Mutsunori & Kishida, Masahiro & Ibaraki, Toshihide, 2006. "A 3-flip neighborhood local search for the set covering problem," European Journal of Operational Research, Elsevier, vol. 172(2), pages 472-499, July.
    7. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    8. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    9. Alminana, Marcos & Pastor, Jesus T., 1997. "An adaptation of SH heuristic to the location set covering problem," European Journal of Operational Research, Elsevier, vol. 100(3), pages 586-593, August.
    10. Alberto Caprara & Matteo Fischetti & Paolo Toth, 1999. "A Heuristic Method for the Set Covering Problem," Operations Research, INFORMS, vol. 47(5), pages 730-743, October.
    11. Ran Wei & Alan Murray & Rajan Batta, 2014. "A bounding-based solution approach for the continuous arc covering problem," Journal of Geographical Systems, Springer, vol. 16(2), pages 161-182, April.
    12. Youngho Lee & Hanif D. Sherali & Ikhyun Kwon & Seongin Kim, 2006. "A new reformulation approach for the generalized partial covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 170-179, March.
    13. Helena R. Lourenço & José P. Paixão & Rita Portugal, 2001. "Multiobjective Metaheuristics for the Bus Driver Scheduling Problem," Transportation Science, INFORMS, vol. 35(3), pages 331-343, August.
    14. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    15. Murray, Alan T., 2001. "Strategic analysis of public transport coverage," Socio-Economic Planning Sciences, Elsevier, vol. 35(3), pages 175-188, September.
    16. Saydam, Cem & Aytug, Haldun, 2003. "Accurate estimation of expected coverage: revisited," Socio-Economic Planning Sciences, Elsevier, vol. 37(1), pages 69-80, March.
    17. Cihan Çetinkaya & Samer Haffar, 2018. "A Risk-Based Location-Allocation Approach for Weapon Logistics," Logistics, MDPI, vol. 2(2), pages 1-15, May.
    18. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    19. Bergantiños, Gustavo & Gómez-Rúa, María & Llorca, Natividad & Pulido, Manuel & Sánchez-Soriano, Joaquín, 2020. "Allocating costs in set covering problems," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1074-1087.
    20. Nguyen, Tri-Dung, 2014. "A fast approximation algorithm for solving the complete set packing problem," European Journal of Operational Research, Elsevier, vol. 237(1), pages 62-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:34:y:2006:i:6:p:617-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.