IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v39y2020i4d10.1007_s10878-020-00529-9.html
   My bibliography  Save this article

An efficient local search algorithm for solving maximum edge weight clique problem in large graphs

Author

Listed:
  • Yi Chu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Boxiao Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shaowei Cai

    (Chinese Academy of Sciences)

  • Chuan Luo

    (Leiden University
    Microsoft Research)

  • Haihang You

    (Chinese Academy of Sciences)

Abstract

Maximum vertex weight clique problem (MVWCP) and maximum edge weight clique problem (MEWCP) are two significant generalizations of maximum clique problem (MCP), and can be widely used in many real-world applications including molecular biology, broadband network design and pattern recognition. Recently, breakthroughs have been made for solving MVWCP in large graphs, resulting in several state-of-the-art algorithms, such as WLMC, FastWClq and LSCC + BMS. However, less attention has been paid to solving MEWCP in large graphs. In this paper, we present an efficient Stochastic Local Search (SLS) algorithm for MEWCP by combining clique construction, local search and graph reduction, resulting in a new algorithm named ReConSLS. We also propose a new upper bound function for edge weighted graphs which is essential for graph reduction. Extensive experiments on a wide range of large graphs demonstrate that ReConSLS surpasses state-of-the-art SLS competitors on the majority of testing graphs.

Suggested Citation

  • Yi Chu & Boxiao Liu & Shaowei Cai & Chuan Luo & Haihang You, 2020. "An efficient local search algorithm for solving maximum edge weight clique problem in large graphs," Journal of Combinatorial Optimization, Springer, vol. 39(4), pages 933-954, May.
  • Handle: RePEc:spr:jcomop:v:39:y:2020:i:4:d:10.1007_s10878-020-00529-9
    DOI: 10.1007/s10878-020-00529-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00529-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00529-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wayne Pullan, 2006. "Phased local search for the maximum clique problem," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 303-323, November.
    2. Haochen Zhang & Shaowei Cai & Chuan Luo & Minghao Yin, 2017. "An efficient local search algorithm for the winner determination problem," Journal of Heuristics, Springer, vol. 23(5), pages 367-396, October.
    3. Alidaee, Bahram & Glover, Fred & Kochenberger, Gary & Wang, Haibo, 2007. "Solving the maximum edge weight clique problem via unconstrained quadratic programming," European Journal of Operational Research, Elsevier, vol. 181(2), pages 592-597, September.
    4. Qinghua Wu & Jin-Kao Hao & Fred Glover, 2012. "Multi-neighborhood tabu search for the maximum weight clique problem," Annals of Operations Research, Springer, vol. 196(1), pages 611-634, July.
    5. Park, Kyungchul & Lee, Kyungsik & Park, Sungsoo, 1996. "An extended formulation approach to the edge-weighted maximal clique problem," European Journal of Operational Research, Elsevier, vol. 95(3), pages 671-682, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Wu & Minghao Yin, 2021. "A Restart Local Search for Solving Diversified Top- k Weight Clique Search Problem," Mathematics, MDPI, vol. 9(21), pages 1-17, October.
    2. Juan Li & Yuan-Hua Yang & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Moth Search: Variants, Hybrids, and Applications," Mathematics, MDPI, vol. 10(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2020. "A Lagrangian Bound on the Clique Number and an Exact Algorithm for the Maximum Edge Weight Clique Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 747-762, July.
    2. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    3. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.
    4. Zhou, Yi & Hao, Jin-Kao & Goëffon, Adrien, 2017. "PUSH: A generalized operator for the Maximum Vertex Weight Clique Problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 41-54.
    5. Yang Wang & Jin-Kao Hao & Fred Glover & Zhipeng Lü & Qinghua Wu, 2016. "Solving the maximum vertex weight clique problem via binary quadratic programming," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 531-549, August.
    6. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2018. "A nonconvex quadratic optimization approach to the maximum edge weight clique problem," Journal of Global Optimization, Springer, vol. 72(2), pages 219-240, October.
    7. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    8. Macambira, Elder Magalhaes & de Souza, Cid Carvalho, 2000. "The edge-weighted clique problem: Valid inequalities, facets and polyhedral computations," European Journal of Operational Research, Elsevier, vol. 123(2), pages 346-371, June.
    9. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    10. Sorensen, Michael M., 2004. "New facets and a branch-and-cut algorithm for the weighted clique problem," European Journal of Operational Research, Elsevier, vol. 154(1), pages 57-70, April.
    11. Oleksandra Yezerska & Sergiy Butenko & Vladimir L. Boginski, 2018. "Detecting robust cliques in graphs subject to uncertain edge failures," Annals of Operations Research, Springer, vol. 262(1), pages 109-132, March.
    12. Immanuel M. Bomze & Michael Kahr & Markus Leitner, 2021. "Trust Your Data or Not—StQP Remains StQP: Community Detection via Robust Standard Quadratic Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 301-316, February.
    13. Hunting, Marcel & Faigle, Ulrich & Kern, Walter, 2001. "A Lagrangian relaxation approach to the edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 119-131, May.
    14. Teobaldo Bulhões & Anand Subramanian & Gilberto F. Sousa Filho & Lucídio dos Anjos F. Cabral, 2017. "Branch-and-price for p-cluster editing," Computational Optimization and Applications, Springer, vol. 67(2), pages 293-316, June.
    15. Zhiqiang Zhang & Zhongwen Li & Xiaobing Qiao & Weijun Wang, 2019. "An Efficient Memetic Algorithm for the Minimum Load Coloring Problem," Mathematics, MDPI, vol. 7(5), pages 1-20, May.
    16. Bahram Alidaee & Haibo Wang, 2017. "A note on heuristic approach based on UBQP formulation of the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 102-110, January.
    17. Pierre Hansen & Nenad Mladenović & Raca Todosijević & Saïd Hanafi, 2017. "Variable neighborhood search: basics and variants," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 423-454, September.
    18. San Segundo, Pablo & Coniglio, Stefano & Furini, Fabio & Ljubić, Ivana, 2019. "A new branch-and-bound algorithm for the maximum edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 76-90.
    19. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    20. Lourenco, Lidia Lampreia & Pato, Margarida Vaz, 2007. "The effect of strengthened linear formulations on improving the lower bounds for the part families with precedence constraints problem," European Journal of Operational Research, Elsevier, vol. 183(1), pages 181-196, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:39:y:2020:i:4:d:10.1007_s10878-020-00529-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.