IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v37y2019i1d10.1007_s10878-017-0247-5.html
   My bibliography  Save this article

A combinatorial auction mechanism for surgical scheduling considering surgeon’s private availability information

Author

Listed:
  • Lu Liu

    (Dalian University of Technology
    Concordia University)

  • Chun Wang

    (Concordia University)

  • Jianjun Wang

    (Dalian University of Technology)

Abstract

This paper addresses surgical scheduling problem in a decentralized environment where the availability of surgeons is considered as their private information. In addition to combinatorial complexities inherited from centralized surgical scheduling models, strategic behaviors of surgeons derived from decentralized game theoretic environments have to be addressed. We propose an iterative auction mechanism, a form of decentralized combinatorial optimization, for solving the surgical scheduling problem. The eligibility restriction of operation rooms is also considered. The objective is to maximize the overall social welfare of patients which is represented by the overall weights of surgeries scheduled. Under the proposed mechanism, we prescribe strategies for surgeons on submitting their availability information to maximize their preference values, and at the same time, minimize the revelation of their private information. We prove that myopic bidding strategy is a weakly dominant strategy for surgeons under the proposed scheduling mechanism and the solution quality is an non-decreasing function of the number of bidding rounds along the bidding process. We also present a nontrivial worked example to illustrate the application of the proposed approach in surgical scheduling setting.

Suggested Citation

  • Lu Liu & Chun Wang & Jianjun Wang, 2019. "A combinatorial auction mechanism for surgical scheduling considering surgeon’s private availability information," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 405-417, January.
  • Handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0247-5
    DOI: 10.1007/s10878-017-0247-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0247-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0247-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liwei Zhong & Shoucheng Luo & Lidong Wu & Lin Xu & Jinghui Yang & Guochun Tang, 2014. "A two-stage approach for surgery scheduling," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 545-556, April.
    2. Lili Liu & Guochun Tang & Baoqiang Fan & Xingpeng Wang, 2015. "Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 938-948, November.
    3. Thibaud Monteiro & Nadine Meskens & Tao Wang, 2015. "Surgical scheduling with antagonistic human resource objectives," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7434-7449, December.
    4. Pablo Santibáñez & Mehmet Begen & Derek Atkins, 2007. "Surgical block scheduling in a system of hospitals: an application to resource and wait list management in a British Columbia health authority," Health Care Management Science, Springer, vol. 10(3), pages 269-282, September.
    5. Zonderland, Maartje E. & Timmer, Judith, 2012. "Optimal allocation of MRI scan capacity among competing hospital departments," European Journal of Operational Research, Elsevier, vol. 219(3), pages 630-637.
    6. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    7. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    8. Ying Yang & Bing Shen & Wei Gao & Yong Liu & Liwei Zhong, 2015. "A surgical scheduling method considering surgeons’ preferences," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1016-1026, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Akbarzadeh, Babak & Moslehi, Ghasem & Reisi-Nafchi, Mohammad & Maenhout, Broos, 2019. "The re-planning and scheduling of surgical cases in the operating room department after block release time with resource rescheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 596-614.
    3. Babak Akbarzadeh & Ghasem Moslehi & Mohammad Reisi-Nafchi & Broos Maenhout, 2020. "A diving heuristic for planning and scheduling surgical cases in the operating room department with nurse re-rostering," Journal of Scheduling, Springer, vol. 23(2), pages 265-288, April.
    4. Vahid Roshanaei & Curtiss Luong & Dionne M. Aleman & David R. Urbach, 2017. "Collaborative Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 558-580, August.
    5. Javiera Barrera & Rodrigo A. Carrasco & Susana Mondschein & Gianpiero Canessa & David Rojas-Zalazar, 2020. "Operating room scheduling under waiting time constraints: the Chilean GES plan," Annals of Operations Research, Springer, vol. 286(1), pages 501-527, March.
    6. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    7. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David R., 2020. "Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling," Omega, Elsevier, vol. 93(C).
    8. Huaxin Qiu & Dujuan Wang & Yanzhang Wang & Yunqiang Yin, 2019. "MRI appointment scheduling with uncertain examination time," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 62-82, January.
    9. Gang Du & Luyao Zheng & Xiaoling Ouyang, 2019. "Real-time scheduling optimization considering the unexpected events in home health care," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 196-220, January.
    10. A, Augustin & P, Jouvet & N, Lahrichi & A, Lodi & LM, Rousseau, 2022. "A data-driven approach to include availability of ICU beds in the planning of the operating room," Omega, Elsevier, vol. 109(C).
    11. Antti Peltokorpi, 2011. "How do strategic decisions and operative practices affect operating room productivity?," Health Care Management Science, Springer, vol. 14(4), pages 370-382, November.
    12. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    13. Şeyda Gür & Mehmet Pınarbaşı & Hacı Mehmet Alakaş & Tamer Eren, 2023. "Operating room scheduling with surgical team: a new approach with constraint programming and goal programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1061-1085, December.
    14. Silva, Thiago A.O. & de Souza, Mauricio C. & Saldanha, Rodney R. & Burke, Edmund K., 2015. "Surgical scheduling with simultaneous employment of specialised human resources," European Journal of Operational Research, Elsevier, vol. 245(3), pages 719-730.
    15. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    16. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    17. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    18. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.
    19. Xi Chen & Liu Zhao & Haiming Liang & Kin Keung Lai, 2019. "Matching patients and healthcare service providers: a novel two-stage method based on knowledge rules and OWA-NSGA-II algorithm," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 221-247, January.
    20. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0247-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.