IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/vyid10.1007_s10878-020-00531-1.html
   My bibliography  Save this article

An optimized approach of venous thrombus embolism risk assessment

Author

Listed:
  • Ruiping Wang

    (Shanghai Polytechnic University)

  • Mei Wang

    (Shanghai Jiaotong University)

  • Jian Chang

    (Shanghai Jiaotong University)

  • Zai Luo

    (Shanghai Jiaotong University)

  • Feng Zhang

    (Shanghai Polytechnic University)

  • Chen Huang

    (Shanghai Jiaotong University)

Abstract

In this paper, we aim to find new approaches to assess venous thrombus embolism (VTE) risk level. We have obtained valid data by filtering all data relevant to the VTE risk rating which was collected in Shanghai general hospital from May to July 2018. In our research, the distribution rule of the valid data was found and the differences of VTE risk scores before and after the surgery was analyzed via variance analysis. We also explored the correlation between the VTE risk score and inner diameter and flow rate of deep vein in lower extremities. Meanwhile, We build linear model, nonlinear model and ordered multinamial probit model to give out the VTE risk scores. After repeated test,it was concluded that the ordered multinamial probit model was the optimum way in the assessment of VTE risk scores. In short, this paper suggests that surgery has increased VTE risk level which is closely associated with inner diameter and flow rate of deep vein in lower extremities. By deploying ordered multinamial probit model, we are able to assess the VTE risk level. The paper is significant both in theory and the practical application of risk assessment,prevention and treatment of VTE and it is also a theoretical support in VTE risk forecasting for patients with operation in hospital.

Suggested Citation

  • Ruiping Wang & Mei Wang & Jian Chang & Zai Luo & Feng Zhang & Chen Huang, 0. "An optimized approach of venous thrombus embolism risk assessment," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-11.
  • Handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00531-1
    DOI: 10.1007/s10878-020-00531-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00531-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00531-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Chang & Lingjuan Zhang, 2019. "Case Mix Index weighted multi-objective optimization of inpatient bed allocation in general hospital," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 1-19, January.
    2. Wei Gao & Wuping Bao & Xin Zhou, 2019. "Analysis of cough detection index based on decision tree and support vector machine," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 375-384, January.
    3. Bowen Jiang & Jiafu Tang & Chongjun Yan, 2019. "A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 150-182, January.
    4. Ling Gai & Jiandong Ji, 2019. "An integrated method to solve the healthcare facility layout problem under area constraints," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 95-113, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiping Wang & Mei Wang & Jian Chang & Zai Luo & Feng Zhang & Chen Huang, 2021. "An optimized approach of venous thrombus embolism risk assessment," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 1053-1063, November.
    2. Qian Li & Wei Zhang, 2021. "An improved linear convergence of FISTA for the LASSO problem with application to CT image reconstruction," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 831-847, November.
    3. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 2021. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 677-699, November.
    4. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 0. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    5. He Huang & Wei Gao & Chunming Ye, 2021. "An intelligent data-driven model for disease diagnosis based on machine learning theory," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 884-895, November.
    6. He Huang & Wei Gao & Chunming Ye, 0. "An intelligent data-driven model for disease diagnosis based on machine learning theory," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-12.
    7. Qian Li & Wei Zhang, 0. "An improved linear convergence of FISTA for the LASSO problem with application to CT image reconstruction," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-17.
    8. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    9. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.
    10. Xuerui Gao & Yanqin Bai & Qian Li, 2021. "A sparse optimization problem with hybrid $$L_2{\text {-}}L_p$$ L 2 - L p regularization for application of magnetic resonance brain images," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 760-784, November.
    11. Jing Yu & Lining Xing & Xu Tan, 0. "The new treatment mode research of hepatitis B based on ant colony algorithm," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-20.
    12. Gang Du & Xi Liang & Xiaoling Ouyang & Chunming Wang, 0. "Risk prediction of hypertension complications based on the intelligent algorithm optimized Bayesian network," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    13. Zhiguo Wang & Lufei Huang & Cici Xiao He, 0. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-28.
    14. Xin Yan & Hongmiao Zhu & Jian Luo, 0. "A novel kernel-free nonlinear SVM for semi-supervised classification in disease diagnosis," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-18.
    15. Xin Yan & Hongmiao Zhu & Jian Luo, 2021. "A novel kernel-free nonlinear SVM for semi-supervised classification in disease diagnosis," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 948-965, November.
    16. Gang Du & Xi Liang & Xiaoling Ouyang & Chunming Wang, 2021. "Risk prediction of hypertension complications based on the intelligent algorithm optimized Bayesian network," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 966-987, November.
    17. Ling Gai & Zhiyue Peng & Jiming Zhang & Jiafu Zhang, 0. "Emergency medical center location problem with people evacuation solved by extended TODIM and objective programming," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-26.
    18. Bin Li & Qianghua Wei & Xinye Zhou, 0. "Research on model and algorithm of TCM constitution identification based on artificial intelligence," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-16.
    19. Xuerui Gao & Yanqin Bai & Qian Li, 0. "A sparse optimization problem with hybrid $$L_2{\text {-}}L_p$$L2-Lp regularization for application of magnetic resonance brain images," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-25.
    20. Shi Yin & Jian Chang & Hailan Pan & Haizhou Mao & Mei Wang, 2021. "Early warning of venous thromboembolism after surgery based on self-organizing competitive network," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 909-927, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00531-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.